同经典的非线性有限元相比,插值系数有限元法是一种高效而经济的算法。
It has the same superconvergence as that classical finite element method, but more economic and efficient.
通过大量仿真和比较,表明算法在复杂非线性优选中具有快速、高效、鲁棒性强的特点,并能在全局范围内有效搜索所有最优解。
Through simulation and large, the algorithm shown in a complex nonlinear optimization is fast, efficient, robust features of the strong, and the global scope effective search all the optimal solution.
因此,研究非线性方程组的具有高效率高精度的算法是很有必要的。
So, it is necessary to study highly efficient and highly accurate algorithms for non-linear systems.
因此,研究非线性方程组的具有高效率高精度的算法是很有必要的。
So, it is necessary to study highly efficient and highly accurate algorithms for non-linear systems.
应用推荐