该模型的核心部分是根据观测到的资料,通过蒙特卡洛马尔科夫链随机抽样的方法来估计变点位置的后验概率分布。
Given the observed hydrological data, the model can estimate the posterior probability distribution of each location of change-point by using the Monte Carlo Markov Chain (MCMC) sampling method.
在模型估计上,采用等级似然估计方法,从而避免了求后验分布的积分运算,简化了估计过程。
Using hierarchical likelihood approach, the multidimensional integral is avoided, and the hierarchical likelihood function and the process of estimating model ar.
依据这一模型,该方法使用贝叶斯理论和领域约束获得了区域和边界的最大后验概率估计。
The method is to derive the maximum a posteriori estimate of the regions and the boundaries by using Bayesian inference and neighborhood constraints based on Markov random fields(MRFs) models.
依据这一模型,该方法使用贝叶斯理论和领域约束获得了区域和边界的量大后验概率估计。
The method is to derive the maximum a posteriori estimate of the regions and the boundaries by using Bayesian inference and neighborhood constraints based on Markov random fields (MRFs) models.
采用贝叶斯最大后验概率估计的方式,从统一背景模型中生成说话人模型。
We use Bayesian maximum a posteriori estimation training a speaker model from background model, to solve the problem of model miss matching in speaker verification system.
由于模型参数的后验条件分布没有确定的分布形式,通过数据扩充得到参数的完全条件分布从而实现模型参数的贝叶斯估计。
The models were estimated via Gibbs sampler with data augmentation by a mixture of standard exponential distribution and standard normal distribution to represent the asymmetric Laplace distribution.
最后根据SAR图像的统计性质,利用基于混合模型估计的分类后验概率将初始分割结果逐尺度进行细化得到SAR图像的最终分割。
Third, the initial segmentation is refined scale by scale to get the final segmentation of the SAR image based on the posterior probability of classification which is estimated by the mixture model.
在算法的状态估计阶段,采用混合系统粒子滤波和二元估计算法同时估计对象系统故障演化模型混合状态和未知参数的后验分布。
For state estimation of hybrid system with unknown transition probabilities, an adaptive estimation algorithm is proposed based on Monte Carlo particle filtering.
在算法的状态估计阶段,采用混合系统粒子滤波和二元估计算法同时估计对象系统故障演化模型混合状态和未知参数的后验分布。
For state estimation of hybrid system with unknown transition probabilities, an adaptive estimation algorithm is proposed based on Monte Carlo particle filtering.
应用推荐