在一定条件下,论证了集函数多目标分式规划问题与其相应的标量化问题以及鞍点问题之间的密切关系。
Under suitable conditions, we give some theorems connecting multiobjective fractional programming with set functions and its scalarization problems as well as the corresponding saddle point problems.
主要研究含矩阵函数半定约束和向量函数等式约束以及多个目标函数的多目标半定规划的对偶和鞍点问题。
The paper studied the multiobjective semidefinite programming with a semidefinite constraint of a matrix function and a multiobjective function.
给出一类广义鞍点问题迭代解法的收敛性分析结果,降低了目前已有相关结论的适用条件,因而使得相关结果具有更广泛的应用性。
In this paper, we present a convergent result of the iterative solution methods for a class of generalized saddle point problem, which lowers the condition of the recent results.
研究广义状态系统中线性二次型微分对策鞍点策略的数值求解问题。
This paper studies the numerical problem of the saddle point strategy for linear quadratic differential game in generalized state systems.
传统的基于距离变换的骨架算法不能保证骨架的连通性,需要引入鞍点解决连通问题。
The traditional skeletonization algorithms based on distance transform can not guarantee the connectivity property, so saddle points should be added to solve the connectivity problem.
问题2:非稳定型随机漫步的连续极限,具调合井的随机漫步,具备巨大尾部的漫步,鞍点近似解。
Problem Set2: Continuum approximations of non-stationary random walks, random walk in a harmonic well, steps with fat tails, saddle-point asymptotics.
考虑了广义二次规划问题,基于其鞍点的充要条件,提出了求解它的一个神经网络。
This paper considers the extended quadratic programming problem. Based on the necessary and sufficient conditions for a saddle point, a neural network for solving it is proposed.
本文研究高维系统连接三个鞍点的粗异宿环的分支问题。
In this paper, we study the bifurcation problems of rough heteroclinic loops connecting three saddle points for a higher-dimensional system.
求解矩阵中的马鞍点是计算机程序设计中的常见问题。
To solve the saddle point is the common problem in computer programming.
给出了齐次规划问题KKT点的一个等价性质,采用对约束函数k次方的方法得到齐次规划问题的一个局部鞍点。
When the object and constraint functions are continous, it shows the relations of KKT points and local saddle-points.
给出了齐次规划问题KKT点的一个等价性质,采用对约束函数k次方的方法得到齐次规划问题的一个局部鞍点。
When the object and constraint functions are continous, it shows the relations of KKT points and local saddle-points.
应用推荐