由非齐次线性方程组解的结构给出静态工作点的基础解;
Then, the basic solution set of conical magnetic bearing static operation points is given based on the solution structure of linear equation group.
在线性方程组有解判别定理的基础上,给出了一个判定非齐次线性方程组存在全非零解的方法。
On the basis of the solution identification theorem in linear equations, a method is presented to ascertain whether there exists all-nonzero solutions to an inhomogeneous linear equation.
在线性方程组有解判别定理的基础上,给出了一个判定非齐次线性方程组存在全非零解的方法。
Homogeneous linear equations of n-variables have the non-zero solutions when the rank of its matrix is less than n.
给出了一个判定齐次线性方程组存在全非零解的充分必要条件。
We present a necessary and sufficient conditions of homogeneous linearity equations existing all-nonzero solution.
利用线性变换,统一给出常系数线性方程齐次通解和非齐次特解解构造定理的简化证明。
Using linear transform, the simple proof for solution of higher order linear differential equations was given.
利用线性变换,统一给出常系数线性方程齐次通解和非齐次特解解构造定理的简化证明。
Using linear transform, the simple proof for solution of higher order linear differential equations was given.
应用推荐