本文研究一类拟线性椭圆—抛物型方程,具有非线性边值条件的奇异摄动问题。
In this paper, we consider singularity perturbed problem for a kind of quasilinear elliptic-parabolic type equation with nonlinear boundary value conditions.
利用打靶法、上下解方法和不动点定理等工具,研究有孔区域上一类具非局部边值条件的非线性扩散方程。
The shooting method, sub and super solution method, and fixed point theorem were used to study a class of nonlinear diffusion equations with nonlocal boundary value condition in perforated domains.
本文列出了一维点阵非谐振动的非线性微分方程组,并求出了这组方程在相应边值条件下的解析解。
The exact solutions of a set of non-linear differential equations with limiting conditions describing the anharmonic vibration of a one-dimensional lattice have been obtained.
还得到了有限离散区间上非线性微分方程在周期边值条件下的一些新结果。
We report some new results about nonlinear differential equations on a finite discrete segment with periodic boundary conditions.
本文研究一类拟线性双曲—抛物型方程具有非线性初边值条件的奇摄动问题。
This paper deals with the singularity perturbed problem of a class of quasilinear hyperbolic-parabolic type equations subject to nonlinear initial-boundary value conditions.
本文研究一类拟线性双曲—抛物型方程具有非线性初边值条件的奇摄动问题。
This paper deals with the singularity perturbed problem of a class of quasilinear hyperbolic-parabolic type equations subject to nonlinear initial-boundary value conditions.
应用推荐