非线性方程采用位移引导或弧长引导的牛顿-拉夫森增量迭代法求解。
Newton Raphson method is used to solve the non linear equations piloted in displacements or in arc length.
然后采用牛顿-拉夫逊法直接对最近电压崩溃临界点模型所构成的非线性方程组进行迭代求解。
Then using the approximate solution as initial value of iteration, the nonlinear equations for the closest point of collapse are solved directly by Newton-Raphson method.
研究了一类超定非线性方程组的牛顿迭代法的收敛性。
The convergence properties of Newton's method for a type of overdetermined systems of equations were studied.
牛顿迭代法也称为牛顿切线法,是解非线性方程的一种方法,通过实例对该方法进行了介绍,包括其理论依据、误差估计、收敛阶数、迭代法初始值的选取规则等。
This paper introduces the method with examples to explain it, including its connective knowledge, theory bases, error estimation, convergence order, and the choosing rule for starting value of it.
通过对非线性方程求根牛顿迭代法的分析,给出牛顿迭代法的一种新的加速技巧,并通过数值算例验证所作的理论分析。数值结果表明该加速方法是行之有效的。
By analyzing the Newton iterative method for nonlinear equation, a new acceleration technique of Newton method is proposed. Numerical results indicate that the acceleration method is effective.
牛顿法是求解非线性方程组的经典的高阶算法。
Newton's method is a classical algorithm with a high order of convergence for solving systems of nonlinear equations.
由于管网各管段的水力参数均系非线性方程决定,因此,系统工况可采用牛顿法求解。
Because the hydraulic parameters of each component of the network are determined by a nonlinear flow formula, the solution to this system can be got by the Nexvton Raphson method.
本文针对变量数与方程数不一致的相容非线性方程组(CNLE),先给出拟牛顿(qn)法。
In this paper, a quasi-Newtonian (QN) method for consistent nonlinear equations (CNLE), which number of equations may be unidentified with the number of variables, is given firstly.
采用引进具有二阶连续可微的辅助函数,将非线性不等式组转化为非线性方程组,然后利用牛顿迭代法对非线性方程组进行求解。
In is established the equivalence between the nonlinear inequalities with nonlinear equations by using auxiliary function, a descended Newton algorithm is proposed.
利用自然水平函数,将众所周知的阻尼牛顿法进行推广,用于求解病态非线性方程组。
By using the so-called "natural level functions", we extend the well-known damped Newton method to solve ill-conditioned systems of nonlinear equations.
然后用牛顿法求解这一非线性方程组,得到二次锥规划问题的最优解。
Then Newton's methods are applied to the system to obtain the optimal solutions of SOCP.
利用自然水平函数,将众所周知的阻尼牛顿法进行推广,用于求解病态非线性方程组。
Using natural spline functions with multiple knots, we discuss the extended Sard approximation of Linear functional.
在非线性方程组牛顿迭代法的基础上,进行五轴数控加工刀具轨迹求解算法研究。
Based on nonlinear equations Newton method, work out the 5-Axis NC tool path.
在非线性方程组牛顿迭代法的基础上,进行五轴数控加工刀具轨迹求解算法研究。
Based on nonlinear equations Newton method, work out the 5-Axis NC tool path.
应用推荐