本文基于费用函数最小化方法,提出一种混合并行量子进化算法用于文本图像的边缘检测。
In this paper we present a hybrid parallel quantum evolutionary algorithm (PQEA) based on cost minimization technique for edge detection.
将量子群进化算法(QEA)与蚁群系统(acs)进行融合,提出一种新的量子蚁群算法(QACA)。
The algorithm is based on the combination of quantum evolutionary algorithm (QEA) and ant colony system (ACS), a new algorithm, quantum ant colony algorithm (QACA) is proposed.
此外,量子进化算法具有收敛快和好的全局搜索特性,因此它比传统的进化算法更适于并行结构的实现。
QEA is more suitable for parallel structure than the conventional evolutionary algorithms because of rapid convergence and good global search capability.
量子衍生进化算法是基于量子计算原理的一种进化算法。
Quantum Inspired Evolutionary Algorithm (QEA) is a type of evolutionary algorithm based on principles of Quantum Computing (QC).
通过直接将量子位的Bloch坐标视为基因位,提出一种基于量子位Bloch坐标的量子衍生进化算法。
By directly regarding the Bloch coordinates of qubit as genes in chromosome, a quantum-inspired evolution algorithm is proposed.
通过直接将量子位的Bloch坐标视为基因位,提出一种基于量子位Bloch坐标的量子衍生进化算法。
By directly regarding the Bloch coordinates of qubit as genes in chromosome, a quantum-inspired evolution algorithm is proposed.
应用推荐