量子存储器可能颠覆海森堡的不确定性原理。
Quantum memory may topple Heisenberg's uncertainty principle.
理论而言,通过测量量子存储器应该会产生和实际测量粒子相同的结果。
In theory, there should be a measurement of the quantum memory that would yield the same result as the measurement done on the particle.
根据一篇刊登在自然物理上的文章报道,量子存储器将会成为所有企图击溃海森堡不确定原理的科学家的必备品。
A quantum memory may be all scientists need to beat the limit of Heisenberg's uncertainty principle, according to a paper published in Nature Physics.
只要他们一缠绕或一分离,一个观察器将对粒子的其中一项属性进行测量,并将测量的结果反馈给量子存储器的管理器。
Once they were entangled and separated, an observer would make a measurement of one of the particle's properties, and then tell the keeper of the quantum memory which variable they measured.
量子比特和存储器之间通过为我们称为共振器件的设备连接,振荡电路使量子比特的值能够保存一段短的时间。
The links between the qubits and the memory contain devices known as resonators, zigzagging circuits inside which a qubit's value can live on for a short time.
加利福尼亚大学的研究人员SantaBarbara成为了第一个将量子处理器和存储器组合起来的人,这使(量子计算机)具有了储存指令和数据的能力。
Researchers at the University of California, Santa Barbara, have become the first to combine a quantum processor with memory that can be used to store instructions and data.
研究表明,单电子环形存储器单元电路利用量子点环状电路结构形式,由外接输入电压控制各岛上的电荷,能够得到存储器的“0”和“1”状态。
It is shown that the two states('0' and '1') of single-electron ring memory, which has a cyclic array of quantum dots, can be implemented by input voltage controlling the charges on the islands.
通过这种方法制备的胶体金量子点浮置栅MOS结构可以在非挥发性存储器研究方面展现巨大的应用前景。
The present results indicate that this technique is promising for the efficient formation of metal nanoparticles inside MOS structures.
设计了一种新型的存储器结构单元———锗/硅双层量子点阵列浮栅结构纳米存储器。
The charge storage characteristic of Ge/Si double-layer quantum-dots floating-gate nano-memory was investigated.
设计了一种新型的存储器结构单元———锗/硅双层量子点阵列浮栅结构纳米存储器。
The charge storage characteristic of Ge/Si double-layer quantum-dots floating-gate nano-memory was investigated.
应用推荐