利用重合度理论证明系统正周期解的存在性。
The existence of the strictly positive periodic solution of the system is proved by using coincidence degree.
利用重合度理论证明系统正周期解的存在性。
Some results on the existence and multiplicity of positive periodic solutions are derived.
利用重合度理论讨论一类多个时滞微分方程的周期解的存在性。
By suing coincide degree theory, this paper discusses the existence of periodic solution for a kind of differential equation with several delays.
利用重合度理论建立了一类周期中立型时滞捕食者-食饵系统正周期解的全局存在性的充分条件。
Sufficient conditions are obtained for the global existence of a positive periodic solution of periodic neutral delay predator-prey system by using the method of coincidence degree theory.
第三章利用矩阵理论与重合度理论,讨论了一类非自共轭非线性二阶差分方程周期解的存在性问题。
Chapter 3 is centered around the existence of periodical solutions for non self-adjoint nonlinear second order difference equations by invoking matrix theory and coincide degree theory.
最后通过叶片的理论型线和实测型线重合度匹配等算法得到实测叶片的各主要误差项。
In the case that measured profiles match theory profiles, each error item is attained by using appropriate arithmetic.
最后通过叶片的理论型线和实测型线重合度匹配等算法得到实测叶片的各主要误差项。
In the case that measured profiles match theory profiles, each error item is attained by using appropriate arithmetic.
应用推荐