• 数学学习中经常有理函数分解部分分式之和

    It is widely used to decompose a rational function into the sum of partial fractions.

    youdao

  • 有理函数分解部分分式难点就是确定部分分式中的待定系数

    The difficulty in decomposing rational function into partial fraction is to fix the undetermined coefficient in partial fraction.

    youdao

  • 给出了把分式分解部分分式之和一个简便方法

    We give a simple method of partitioning a true fraction into the partial fraction expansion.

    youdao

  • 笔者在指出罗朗级数系数有理函数分解部分分式之和的系数之间关系并举出应用实例。

    This paper points out the relationship between the coefficient of Laurent series and that of the sum of partial fractions for rational functions. Some typical examples are presented in illustration.

    youdao

  • 本文利用导数给出了有理分式分解部分分式时的一个简洁系数公式以及公式的使用

    This paper, by using derivative, gives a concise coefficient formula and its usage in decomposing rational into partial fraction.

    youdao

  • 根据有理函数及其导数性质,微分把有理函数分解部分分式,给出了一次因式对应部分分式系数次质因式前两对系数的计算公式。

    Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.

    youdao

  • 根据有理函数及其导数性质,微分把有理函数分解部分分式,给出了一次因式对应部分分式系数次质因式前两对系数的计算公式。

    Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定