这种繁冗的遁辞常见于数学的许多部分分式中。
This sort of ritual circumlocution is common to many parts of mathematics.
在数学学习中经常要将有理函数分解成部分分式之和。
It is widely used to decompose a rational function into the sum of partial fractions.
给出了把真分式分解为部分分式之和的一个简便方法。
We give a simple method of partitioning a true fraction into the partial fraction expansion.
将有理函数分解为部分分式的难点就是确定部分分式中的待定系数。
The difficulty in decomposing rational function into partial fraction is to fix the undetermined coefficient in partial fraction.
对具有多重极点的有理函数,本文给出了部分分式展开的实用算法,该算法不需求导数值。
This paper gives a practical algorithm for partial fraction expansion of a rational function with multiple poles without derivative evaluation.
本文利用导数给出了有理真分式分解为部分分式时的一个简洁的系数公式以及该公式的使用。
This paper, by using derivative, gives a concise coefficient formula and its usage in decomposing rational into partial fraction.
笔者在此指出了罗朗级数的系数与有理函数分解的部分分式之和的系数之间的关系,并举出应用实例。
This paper points out the relationship between the coefficient of Laurent series and that of the sum of partial fractions for rational functions. Some typical examples are presented in illustration.
当激励信号是常见信号时,本文提出的方法与求有理分式的拉氏反变换的部分分式展开法在形式上完全相同。
Under the ordinary exciting signal, this method of calculation is just in the same form as that for inverse Laplace transformation of rational fraction by partial fraction expansion.
利用部分分式求有理函数的积分时,确定部分分式的系数的计算量很大,举例介绍如何确定部分分式的待定系数。
Abstract:The solutions to determine the undetermined coefficients of partial fraction in the rational function integral is introduced.
根据有理函数及其导数性质,用微分法把有理函数分解为部分分式的和,给出了一次因式所对应的部分分式各系数和二次质因式前两对系数的计算公式。
Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.
根据有理函数及其导数性质,用微分法把有理函数分解为部分分式的和,给出了一次因式所对应的部分分式各系数和二次质因式前两对系数的计算公式。
Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.
应用推荐