算法引入模拟退火机制,在遗传进化过程中的每一代,对最优个体进行邻域局部寻优,利用模拟退火进一步改善算法的收敛性能。
Simulated annealing mechanism is introduced to do local-search for the best chromosome in every generation of the evolution process. This improves the convergence of the algorithm.
用其他随机优化算法(模拟退火算法、遗传算法、进化规划等)与免疫算法进行了比较研究,给出了他们的异同点、免疫算法的优点等。
We made improvement to the search mechanism of the traditional Ant Colony Algorithm(ACA), put forward a Random Ant Colony Algorithm(RACA), and applied it in air combat decision.
用其他随机优化算法(模拟退火算法、遗传算法、进化规划等)与免疫算法进行了比较研究,给出了他们的异同点、免疫算法的优点等。
We made improvement to the search mechanism of the traditional Ant Colony Algorithm(ACA), put forward a Random Ant Colony Algorithm(RACA), and applied it in air combat decision.
应用推荐