本文首先给出一个称为“通解矩阵”的新定义,然后证明两个有关定理。
In this paper first a new definition called "general solution matrix" is given, then two theorems are proved.
本文给出线性代数方程组反问题的对称矩阵解,及其通解表达式。
To the inverse problem of the system of linear algebraic equations, tiauthor gives a symmetric matrix solution and the expression of its general solution.
通过对增广矩阵适当“加边”,利用矩阵的初等行变换,直接求出线性方程组的通解形式,并在理论上给予了论证。
This paper presents directly the general solution to sets of linear equations by properly bordering on augmented matrix and elementary transformation, and produeces some theoretical proving.
该通解是一组自由参向量的显式线性表示,其系数阵是依赖于矩阵F的特征值的数值矩阵。
The coefficient matrices in the linear combination are numerical matrices which depend on the eigenvalues of the matrix $F$.
运用基解矩阵和摄动方法,给出了两类微分方程的通解表达式。
By using fundamental solution matrix and method of perturbation, we give the expression of general solutions for two classes of differential equations.
本文用矩阵分解法给出该反问题在正定矩阵类及正交矩阵类中的通解。
General solutions of above inverse problem in positive definite matrix and in orthogonal matrix are given here by using factorization method of matrix.
第二种通过右互质既约分解,给出了通解关于一组自由参量和矩阵j的特征值的显式表达式。
By utilizing some right coprime fractions, the second solution is given in an explicit form with respect to the free parameter vectors and the eigenvalues of the matrix J.
第二种通过右互质既约分解,给出了通解关于一组自由参量和矩阵j的特征值的显式表达式。
By utilizing some right coprime fractions, the second solution is given in an explicit form with respect to the free parameter vectors and the eigenvalues of the matrix J.
应用推荐