将关键变量分离原理和辅助模型思想相结合,得到单新息递推增广最小二乘辨识算法。
By combining the key term separation principle with the auxiliary model idea, we can obtain the single innovation recursive extended least squares identification algorithm.
与常规递推增广最小二乘算法相比,提出的方法具有更快的收敛速度,能产生更高精度的参数估计。
Compared with the recursive extended least squares algorithms, the proposed two algorithms have fast convergence rates and can produce highly accurate parameter estimation.
与常规递推增广最小二乘算法相比,提出的方法具有更快的收敛速度,能产生更高精度的参数估计。
Compared with the recursive extended least squares algorithms, the proposed two algorithms have fast convergence rates and can produce highly accurate parameter estimation.
应用推荐