研究了自适应积分方法(AIM)在计算电大尺寸目标的电特性中的应用。
Adaptive integral method (AIM) is employed to fast compute the radiation and scattering properties of electrical large-scale structures.
文章给出了基于高阶叠层型勒让德基函数的矩量法公式,并引入自适应积分方法来加速其求解过程。
The higher-order hierarchical Legendre basis functions based MOM is introduced, and the AIM is employed to accelerate the solving procedure.
采用了具有积分性质的切换指标函数作为切换法则和最小方差的控制方法构成了多模型自适应控制器。
A switching function with integral property and minimum variance algorithm are used to set up the multiple model adaptive controller.
然后利用积分反推方法,构造性地设计出了输出反馈稳定控制器、自适应镇定控制器和渐近跟踪控制器。
Then, the output-feedback stable controller, the adaptive output-feedback stable controller and asymptotical tracking controller are constructively designed using integral backstepping approach.
结果表明,各种方法适应性都很强,其中以累积分布曲线法的精度最高,其精度是82.7%。
Results show that all the methods are effective in prediction, and, of them, the method of accumulated distribution curve resulted the highest precision of 82.7%.
数值积分算例表明,该算法得到的积分值精度高,自适应强,是一种有效的数值积分方法,在数值计算和工程实际应用中具有一定的参考和应用价值。
Simulation examples of integral show the algorithm is a validated method with high precision and powerful self-adapting. The algorithm has value in numerical calculation and engineering practice.
本文主要研究自适应桁架结构的振动控制理论和方法,将结构中主动构件的局部弹性内力经过积分和比例反馈控制器运算后,得到主动构件的输出控制力,以实现结构的振动阻尼控制。
This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary.
本文主要研究自适应桁架结构的振动控制理论和方法,将结构中主动构件的局部弹性内力经过积分和比例反馈控制器运算后,得到主动构件的输出控制力,以实现结构的振动阻尼控制。
This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary.
应用推荐