结果表明,在设计矩阵高度共线性时,用奇异值分解的迭代加细可以改进回归系数的估计。
Results show that iterative refinement using the SVD can improve regression coefficient estimates in the cases where the design matrix is highly collinear.
结果表明,在设计矩阵高度共线性时,用奇异值分解的迭代加细可以改进回归系数的估计。
Results show that iterative refinement using the SVD can improve regression coefficient estimates in the cases where the design matrix is highly collinear.
应用推荐