利用结构扰动结果分析了线性连续区间系统的特征值的分布情况。
And we apply the results of the structured perturbation bounds to the analysis for eigenvalue clustering of interval systems.
本文讨论了连续体结构拓扑优化的均匀化方法及其相关理论,分别针对静力问题和特征值问题建立了相应的结构拓扑优化模型。
The topology optimization models of the static problem and the eigenvalue problem for the continuums based on the homogenization method are proposed in this paper.
将离散系统振动分析中的通用的矩阵摄动法推广到连续系统。 采用弹性结构理论算子,对连续系统的振动特征值摄动问题进行统一描述。
A united solution procedure for eigenvalue perturbation problem in structural vibration analysis of continuous systems is proposed with the aid of operator operation.
将平面连续弹性体的几何边界形状考虑为随机量,建立了描述这种连续体特征值问题的随机微分方程和边界条件。
Regarding the boundary shape of elastic structures as random variables, stochastic equations and boundary conditions that govern eigenvalue problems are set up.
通过对细分矩阵特征值的理论分析,证明了文中方法的细分极限曲面收敛且切平面连续。
We deduce the eigenvalues of 2-neighbors subdivision matrix of the scheme, and prove that the subdivision surface is convergent, and has property of tangent plane continuity.
首次将连续同伦算法应用于非对称广义特征值问题的并行求解,提出并行连续同伦算法。
A homotopy continuation algorithm is proposed to deal with parallel computation for this eigenvalue problem.
首次将连续同伦算法应用于非对称广义特征值问题的并行求解,提出并行连续同伦算法。
A homotopy continuation algorithm is proposed to deal with parallel computation for this eigenvalue problem.
应用推荐