建立了简化成二维定常不可压缩流体的离心泵叶片的边界层方程,并对相关量进行了分析。
The boundary layer equations of vanes of centrifugal pump in two-dimensional incompressible fluid are set up and the relevant quantities are analyzed in the paper.
用层流边界层方程,导出幂律流体轴对称层流自由射流的常微分方程,并给出其方程的数值解。
The ordinary differential equation of round laminar jet of power-law fluid is derived, and the solution of this equation by numerical integration is obtained.
依据钝锥体再入远尾迹流动的边界层特征,从边界层方程出发得到了高超声速远尾迹流动的拟相似性解。
According to the boundary layer character in reentry wake of hypersonic blunt cone body, this paper presents a local similar solution for hypersonic wake.
建立了含有微气泡的平板边界层方程,并采用一种简单的混合长度模型和有限差分方法对该方程进行了数值计算。
The equations of the boundary layer containing microbubbles on the plate are established, then calculated employing a simple mixing length model and a finite difference method.
采用动量积分方法推出了管道流动中的速度边界层方程,给出了管道层流和紊流时速度边界层和核心区中的速度分布、边界层厚度的解析结果,并与冯。
The analysis result of velocity distribution and boundary layer thickness is put forward in the boundary layer and cored region for laminar and turbulent flow of pipeline.
通过对压力面边界层分离条件的分析得出叶片型线方程并给出计算实例。
According to the analysis on the boundary layer separation condition, parameter equation of vane curve for centrifugal pump is established.
给出了离心泵叶片表面的边界层动量积分方程的解的构造及其计算方法,并以计算实例说明了该解的唯一性和算法的稳定性、收敛性。
Solutions of the boundary layer momentum integral equations of vanes in centrifugal pumps are given and their calculation method and their illustration with example are given too.
采用非线性抛物化稳定性方程(PSE)研究了非平行边界层的弱非线性稳定性。
The weak nonlinear instability of a nonparallel boundary layer is studied by nonlinear parabolized stability equations(PSE).
利用边界层函数法研究了一类非线性三阶微分方程的奇摄动边值问题。
Use the method of boundary layer functions to study the singularly perturbed boundary value problem for a kind of third order nonlinear differential equations.
实验证明通过改变叶片型线参数方程中的速度系数的取值,可以控制边界层的分离,进而改善泵的性能,提高其水力效率。
The experiment shows that by changing the velocity coefficient , the separation of boundary layer on pump vane can be controlled, and the performance of pump is improved and its hydraulic efficiency.
建立任意廻转面叶片表面边界层基本方程组,分析边界层分离的旋转效应。
The basic equations of the boundary layer for blade surface flow of arbitrary cyclical surface are established, and the rotating effect for boundary layer separation is analyzed.
该文从抛物化稳定性方程出发,采用从上游往下游递推的数值方法,对非平行边界层稳定性问题进行了数值计算和分析。
Based on parabolized stability equations, the stability of nonparallel boundary layer is calculated and analyzed by using recursion numerical method.
本文应用零方程模型和二方程模型计算了椭球体有攻角绕流对称面上的三维湍流边界层。
Revised method is proposed for calculation of three dimensional turbulent boundary layers on the surface of symmetry plane of a flow around ellipsoid at incidence.
研究某类三阶非线性方程的边界层现象。
Boundary layer phenomena of third-order nonlinear equation is studied in this paper.
叶片型线的选择应满足边界层不分离条件及由欧拉方程——泵的基本方程所确定的理论扬程条件。
The choice of vane curve should satisfy the conditions of boundary layer non-separation and theoretical distance head by Eular equation-the basic equation of pumps.
然后应用反迭代法与边界层渐近匹配的方法求解了钝锥边界层的稳定性方程,得到了钝锥边界层转捩数据。
The Rayleigh inverse-iteration method and boundary layer asymptotic expansion method are used to solve the blunt cone boundary layer stability equation to get reliable boundary layer transition data.
从边界层动态微分方程出发,按照速度边界层有关理论,推导出了边界层动态积分方程。
Based on the dynamical differential equations for the velocity boundary layer, dynamic integrate equation is drawn.
采用极为有效的抛物化稳定性方程(PSE)方法研究边界层的非平行稳定性。
A new method of the parabolic stability equations (PSE) is used to study the nonparallelism of the boundary layer stability.
研究了溶质运移边界层条件和边界层运动方程。
The boundary layer condition and describing equation of boundary layer for solute transport are studied in this paper.
场协同原理是基于稳态时层流热边界层的积分方程得到的,其正确性已得到了实验及数值验证。
Field synergy principle is based on the steady state laminar thermal boundary layer integral equations and has been validated by the experimental data and numerical simulations.
在对边界层速度合理假设的基础上,求解了动态积分方程,给出了依时间和空间变化的边界层厚度响应函数。
The dynamical respondent functions dependent of the time and the space for the velocity boundary layer are different from the classical results.
考虑一类具有非局部源项的抛物型方程组,首先建立了爆破解的爆破速率估计,并在此基础上给出了爆破解的边界层估计。
In this paper, we deal with a parabolic system with nonlocal sources. To a blow-up solution, we establish its precisely blow-up rate estimation and show its boundary estimation.
考虑一类具有非局部源项的抛物型方程组,首先建立了爆破解的爆破速率估计,并在此基础上给出了爆破解的边界层估计。
In this paper, we deal with a parabolic system with nonlocal sources. To a blow-up solution, we establish its precisely blow-up rate estimation and show its boundary estimation.
应用推荐