考虑跳扩散模型中交换期权的定价问题。
The problem of pricing exchange options in a jump-diffusion model is considered.
该公式是标准跳扩散模型下的欧式期权及欧式交换期权定价公式的推广。
These pricing formulas generalize the corresponding European option and European exchange option pricing on jump-diffusions.
利用抛物型偏微分方程的极值原理,得到了带跳扩散模型下美式期权价格及最佳实施边界的误差估计。
Using the critical estimates of parabolic type partial differential equation. we obtain the error estimates of price and optimal exercise boundary of American option in a jump-diffusion model.
本文研究标的资产价格过程服从跳扩散模型时美式期权价格及其最佳实施边界当到期日趋于无穷大时的渐近分析。
The intent of this paper is to discuss the critical property of price and optimal exercise boundary of American option when the expiry date runs to infinite in a jump-diffusion model.
采用自由空间模型,通过最佳跳数值控制探测数据的扩散范围,增强能量的高效利用。
By controlling the diffusion of exploratory message with optimal hops in free space model, the energy consumption can be more efficient.
在跳扩散过程模型下研究了远期起点期权的定价问题。
The problem of forward starting options in jump-diffusion models is considered.
研究了股票支付红利的跳扩散过程的欧式期权定价模型。
Considering dividend, we establish the option-pricing model with jump-diffusion process.
分别在股票支付红利、跳-扩散模型,在连续随机利率、跳-扩散模型,和在不连续随机利率、跳-扩散模型的假设下,推导出了各自新的期权定价公式。
Some new option pricing formulas are derived on condition that the model is jump-diffusion, the stock pays dividends and the stochastic interest rate are continuous or discontinuous.
分别在股票支付红利、跳-扩散模型,在连续随机利率、跳-扩散模型,和在不连续随机利率、跳-扩散模型的假设下,推导出了各自新的期权定价公式。
Some new option pricing formulas are derived on condition that the model is jump-diffusion, the stock pays dividends and the stochastic interest rate are continuous or discontinuous.
应用推荐