全息时空被用于某种研究量子化引力的方法,这种方法与超弦理论联系紧密。
"Holographic space-time is used in certain approaches to quantising gravity that have a strong connection to string theory, " says Cramer.
这种时空的颗粒性源于超弦理论与环圈量子重力学的最重要差异。
This granularity emerges from what is the most important difference between the two theories.
不过你别指望在达沃斯上碰到一个谈论超弦理论stringtheory的物理学博士,或是听到有人用在TED上的方式来谈论该怎么弹奏琉特琴。
You’re not going to meet a Ph.D. in string theory or hear a talk about playing the lute at Davos the way you do at TED.
目前研究量子引力最常用的方法是超弦理论,研究人员希望它能描述宇宙在最基本层面上的活动。
Today the most popular approach to quantum gravity is string theory, which researchers hope could describe happenings in the universe at the most fundamental level.
它甚至有助于对超弦理论的某些方面进行间接的检测。
It may even help to indirectly test some components of superstring theory.
然而,从那时起,超弦理论被证明比人们预料的更为复杂。
Since then, however, superstrings have proved a lot more complex than anyone expected.
如果能证实超对称性的确存在,那无异于为M理论注入了一针强心剂,物理学家们可以借此来解释宇宙诞生之初,各种作用力是如何从一种超级作用力里诞生的?
Confirmation of supersymmetry would be a shot in the arm for M-theory and help physicists explain how each forces at work in the universe arose from one super-force at the dawn of time.
如果能证实超对称性的确存在,那无异于为M理论注入了一针强心剂,物理学家们可以借此来解释宇宙诞生之初,各种作用力是如何从一种超级作用力里诞生的?
Confirmation of supersymmetry would be a shot in the arm for M-theory and help physicists explain how each force at work in the universe arose from one super-force at the dawn of time.
科学家们会寻找“超对称”的证据(在这个理论中已有的元素粒子都与一个巨大的影子伙伴粒子相伴)和更广的领域。
Scientists will be looking for evidence of "supersymmetry" - a theory in which existing elementary particles are paired with a massive "shadow" partner - and extra dimensions.
希格斯色子是超对称性理论的关键所在,但是它的预期质量随着来自其他基本粒子的量子效应所引起的广度波动而发生变化。
The Higgs is crucial to the theory, but its predicted mass is subject to wild fluctuations caused by quantum effects from other fundamental particles.
但是超弦理论已活跃了几十年,却没有什么突破。超弦理论的失败激励了另一种理论的倡导者。
But string theory has been around for decades without delivering the goods, and that failure has encouraged the protagonists of an alternative explanation to push themselves forward.
如果他的构想正确无误,他可能已经开设起一个新平台来研究一种称为“超对称性”的新型物理理论,这也就超出了标准模式理论的控制范围。
And if he is right, he may have opened a window on to a theory of physics known as supersymmetry, which goes beyond the Standard Model.
布莱恩·葛林可能是超弦理论的支持者中最著名的一位了,超弦理论认为宇宙中的力和粒子是由11维空间中振动的微小的弦产生的。
Brian Greene is perhaps the best-known proponent of superstring theory, the idea that minuscule strands of energy vibrating in 11 dimensions create every particle and force in the universe.
考虑到翘曲速度旅行的超理论本质,安全问题从来没有可行性的原理问题重要。
Given the highly theoretical nature of warp speed travel, safety issues usually take a backseat to fundamental questions about its feasibility.
这对你来说,是卡通物理学,但它和很严肃的超弦理论非常相似。
That's cartoon physics for you, but it's also a lot like the very serious business of superstring theory.
大型强子对撞机上安装的“紧凑型缪子线圈”探测设备(CMS)获取的数据显示一种名为“轻子”的基本粒子在实验中显示很高的几率以三个一组被创造出来,这是一种名为“超对称”的理论所预言的结果。
Data from the CMS experiment is showing significant excesses of particles known as leptons being created in triplets, a result that could be interpreted as evidence for a theory called supersymmetry.
随着大型强子对撞机收集越来越多的数据,超对称性理论将需要更多干预性手段对粒子质量进行调整。
As the LHC collects more data, SUSY will require increasingly intrusive tweaks to the masses of the particles.
对于某些理论学家,正如剑桥大大学的理论学家本.阿伦阿赫所言,也许最重要的事情莫过于,超对称性理论是一个异常美妙的数学方式”。
Perhaps most important for some theorists, "SUSY is very beautiful mathematically, " says Ben Allanach, a theorist at the University of Cambridge.
到年底,对撞机将达到1000千兆电子伏——极有可能排除超对称性理论中最常提到的一些变化。
By the end of the year, it will reach 1, 000 gigaelectronvolts — potentially ruling out some of the most favored variations of supersymmetry theory.
一种被称为“超对称性”的粒子理论预言了“弱作用重粒子”(WIMPs)的存在——它也许就是暗物质粒子。
A particle theory called "supersymmetry" predicts the existence of weakly interacting massive particles (WIMPs), which could be the particles of dark matter.
这个超弦理论的对头叫做“环圈量子重力学”,于1986年由宾西法尼亚州立大学的Abhaya shtekar提出。
Loop quantum gravity, as this rival is known, was dreamed up in 1986 by Abhay Ashtekar, of Pennsylvania State University.
超对称性理论被认为是,可以用来解释那些,连标准模型都解释不了的物理学的一个理论结构。
One framework to explain physics beyond the Standard Model is known as supersymmetry.
超对称性理论既有操作上的实际意义,也有数学方式的理论观感。法国巴黎南方大学的物理学家亚当.法尔考斯基(AdamFalkowski)一针见血地指出,它向其拥趸注入了“宗教信仰精神力量”。
SUSY's utility and mathematical grace have instilled a "religious devotion" among its followers, says Adam Falkowski, a theorist at the University of Paris-South in France.
勒斯特说:“如果我们还不能发现超对称性理论在现实操作上的正确性,很多事情都会发生改变。”
"Plenty of things will change if we fail to discover SUSY, " says Lester.
M理论预测了超对称性的存在,超对称性认为所有基本粒子都存在伴粒子,这些伴粒子的名称都很奇特,比如超对称电子(selectrons)和超对称夸克(squarks)等,但到目前为止,科学家们还没有发现这种超对称性伴粒子。
One possibility predicted by M-theory is supersymmetry, an idea that says fundamental particles have heavy – and as yet undiscovered – twins, with curious names such as selectrons and squarks.
然而,由于利害关系如此之高,这并没有阻止试图解决超弦理论的物理学家团队进取。
However, since the stakes are so high, that hasn't stopped teams of enterprising physicists from trying to solve superstring theory.
在超弦理论可以解释通过假定亚原子粒子的共振或其实只是一个微小的弦振动的亚原子物理学的神秘量子法则。
The superstring theory can explain the mysterious quantum laws of sub-atomic physics by postulating that sub-atomic particles are really just resonances or vibrations of a tiny string.
在超弦理论可以解释通过假定亚原子粒子的共振或其实只是一个微小的弦振动的亚原子物理学的神秘量子法则。
The superstring theory can explain the mysterious quantum laws of sub-atomic physics by postulating that sub-atomic particles are really just resonances or vibrations of a tiny string.
应用推荐