贝叶斯网络是在不确定性环境下有效的知识表示方式和概率推理模型,是一种流行的图形决策化分析工具。
Bayesian Networks is a model that efficiently represents knowledge and probabilistic inference and is a popular graphics decision-making analysis tool.
贝叶斯网络是数据采掘的一个非常有效的工具,它能够定性和定量地分析属性之间的依赖关系,进行概率推理。
Bayesian network as, a very useful tool in data mining, can provide qualitative and quantitative relationship between attributes and probability inference.
同时利用贝叶斯网络实现概率推理,便于描述故障特征的变化及对变压器故障原因的快速分析。
At the same time, probability reasoning can be realized by BN, which can be used to describe changes of fault symptoms and analyze fault reasons of transformer.
本文主要涉及的不确定推理模型包括主观贝叶斯的概率推理模型,可信度理论推理模型,证据理论及其改进推理模型以及神经网络推理模型。
In the paper, the models of uncertain reasoning are focused, such as the reasoning model of Bayes probability, Reliability theory, D-S evidence theory and Neural Network.
针对目标综合识别过程中的复杂性和不确定性特点,利用贝叶斯网络融合模型对融合识别过程进行概率建模及推理。
For dealing with the complexity and uncertainty in the target identification fusion, the fusion model of Bayesian Networks is used.
在控制系统中,将贝叶斯概率引入到模糊rbf神经网络中,增强了系统的推理能力,提高了飞机各个航道位置的模拟伺服精度。
In the control system, Bayes probability is introduced in the fuzzy RBF neural network and it intensity the inference ability and increase the servo precision.
在控制系统中,将贝叶斯概率引入到模糊rbf神经网络中,增强了系统的推理能力,提高了飞机各个航道位置的模拟伺服精度。
In the control system, Bayes probability is introduced in the fuzzy RBF neural network and it intensity the inference ability and increase the servo precision.
应用推荐