在该协商模型的基础上引入贝叶斯学习机制,并分别对更新信念、生成提议等协商过程作了详细阐述。
We embed Bayes learning mechanism on the basis of the negotiation model, and elaborate process descriptions of evaluating offers, belief revision and proposing counter-offers are presented.
贝叶斯网络的学习是数据挖掘中非常重要的一个环节,是将先验知识和模型评价融入训练数据,获得数据中隐藏的拓扑结构和参数的过程。
The learning of Bayesian Networks is an important tache, which combines training data with prior knowledge and model evaluation to acquire the structure hidden in data and parameters.
贝叶斯学习理论使用概率去表示所有形式的不确定性,通过概率规则来实现学习和推理过程。
Bayesian learning Theory represents uncertainty with probability and learning and inference are realized by probabilistic rules.
详细分析了贝叶斯网络的建模过程,即贝叶斯网络的结构学习过程和贝叶斯网络的参数学习过程。
In the process of modeling BNs, the structure learning and parameter learning of BNs are analyzed detailedly.
详细分析了贝叶斯网络的建模过程,即贝叶斯网络的结构学习过程和贝叶斯网络的参数学习过程。
In the process of modeling BNs, the structure learning and parameter learning of BNs are analyzed detailedly.
应用推荐