利用不动点理论,给出了一类半线性微分方程有界的调和伪概周期解存在的充分条件。
Using fixed point theorems, in this paper we give sufficient conditions of the existence of bounded mild pseudo almost periodic solution for some semilinear differential equations.
众所周知,分数次积分算子是调和分析中以偏微分方程为背景的一种重要算子。
It is well-known that fractional integral operator is one of the important operators in harmonic analysis with background of partial differential equations.
调和方程的解与微分形式之间有着密切的联系。
The solution of A-harmonic equation and the differential forms have many affinities.
这两个偏微分方程都是非线性调和方程。
These partial differential equations are all nonlinear harmonic equations.
本文主要是要利用调和分析的方法讨论偏微分方程中的若干问题。
In this paper we prepare to consider several problems of the partial differential equations by the methods of harmonic analysis.
利用网微分方法将随机选择的概念,推广到有限马氏链随机转移概率随机调和平均的情形。
The notion of random selection is extended to random harmonious average of random transition probability for nonehomgenous Markov chains by using a new method of differentiation on net.
本文给出了某些二阶非线性微分方程在周期外力作用下存在调和解的若干定理。
In this paper we prove some theorems on harmonic solutions of some second-order nonlinear equations under a periodic external force.
用微分几何理论和D-H法研究了2R-1P3R 双臂机器人用于异形石材加工的速度协调和加速度协调,导出了由工艺给定的切削加工速度求解各关节运动速度和加速度的计算公式。
In this paper, velocity harmonization and acceleration harmonization of a 2R-1P3R two-arm robot have been studied for special-shaped surface stone with the differential geometry theory and D-H method.
用微分几何理论和D-H法研究了2R-1P3R 双臂机器人用于异形石材加工的速度协调和加速度协调,导出了由工艺给定的切削加工速度求解各关节运动速度和加速度的计算公式。
In this paper, velocity harmonization and acceleration harmonization of a 2R-1P3R two-arm robot have been studied for special-shaped surface stone with the differential geometry theory and D-H method.
应用推荐