• 采用的基线系统文本无关的说话人辨认系统

    The baseline system we used is text-independent speaker identification system.

    youdao

  • 实验结果表明利用特征组合分类器的方法可以提高“文本无关”说话人辨认系统的识别率可靠性。

    The experimental results have shown that Combining Multiple Classifiers with different features can result in satisfactory and significant improvement in recognition performance.

    youdao

  • 说话辨认系统目的提取特征辨认表征说话人身份语音信号信息,因此它身份验证领域具有广阔应用前景。

    The goal of speaker identification systems is to extract, characterize and identify the information in the speech signal conveying speaker identity.

    youdao

  • 说话人辨认实验中,较之传统GMM方法,基于EGMM系统的正识提高了近3%,并且模型具有更小平均尺寸

    Compared with traditional GMM, the correct recognition rate of si system based on EGMM increases by approximate 3%. Furthermore, the GMMS in new system have smaller average size.

    youdao

  • 说话人辨认实验中,较之传统GMM方法,基于EGMM系统的正识提高了近3%,并且模型具有更小平均尺寸

    Compared with traditional GMM, the correct recognition rate of si system based on EGMM increases by approximate 3%. Furthermore, the GMMS in new system have smaller average size.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定