利用一种新的姿态描述形式推导出了角速度为零时航天器的目标姿态,然后基于线性化后的系统设计了线性二次型最优控制器。
Then, the expected orientation of spacecraft with zero angular velocity was derived with a new attitude parameterization and LQR controller was designed based on the linearized system.
运用模糊控制原理,设计了横摆角速度反馈控制模糊控制器和质心侧偏角反馈控制模糊控制器。
Based on fuzzy control principle. The fuzzy controller of feedback control of yaw rate and the fuzzy controller of feedback control of side slip Angle were designed.
所设计的控制器可以实现两个刚体的角速度运动达到关于惯性主轴角速度的部分同步。
The proposed controllers can achieve partial synchronization for the angular velocity with respect to the principal axes of inertia between angular velocity motions of the two rigid bodies discussed.
设计的模糊pid控制器以横摆角速度和质心侧偏角作为控制目标,以整车模型的横摆角速度与理想横摆角速度之差作为控制变量。
Yaw rate and sideslip Angle are the control objectives and the difference of the yaw rate of actual vehicle model and the ideal yaw rate is the control variable in the fuzzy-PID controller.
基于最优控制理论,设计横摆力矩控制器,通过前馈控制调整侧偏角,状态反馈控制调整横摆角速度和侧偏角。
Basing on the optimal control theory, the DYC controller is designed by the feed forward of the sideslip Angle regulation and the state feedback of both yaw rate and sideslip Angle.
基于最优控制理论,设计横摆力矩控制器,通过前馈控制调整侧偏角,状态反馈控制调整横摆角速度和侧偏角。
Basing on the optimal control theory, the DYC controller is designed by the feed forward of the sideslip Angle regulation and the state feedback of both yaw rate and sideslip Angle.
应用推荐