本文讨论了多变量系统的解耦问题,给出了一种简便的解耦补偿矩阵的设计方法。
This paper deals with the decoupling of multivariable control systems and presents a simple method to design dynamic compensator matrix.
如果阵列的互阻抗(或互耦系数)矩阵确知,理论上可以精确补偿互耦的影响,从而实现极低副瓣接收。
If the mutual impedance or mutual coefficient matrix of an array is perfectly known, one can completely compensate the effect of mutual coupling and realize the desired low sidelobe level in theory.
提出了利用齐次变换矩阵和正向、逆向运动学相结合的误差计算方法以及相应的误差补偿策略;
The error calculating method using the homogeneous coordinate transformation matrix together with forward and inverse kinematics and the corresponding error compensation strategies were proposed.
该算法是在粗确定插补点参数后,引入误差补偿值,通过求解矩阵方程提高插补点的计算精度。
The interpolation precision was improved by introducing error compensation and solving the matrix equation after interpolated points' parameter had been computed roughly.
通过加入必要的回路检测,避免了幅度补偿后矩阵奇异性的产生,仿真结果表明了改进算法的有效性。
Necessary cycle detection is added to avoid the singular matrix appearing after gross error compensation,. Simulation results verify the effectiveness of modified algorithm.
研究了一种矩阵变换器的非线性补偿方法。
In this paper, a nonlinearity compensation strategy for matrix converter is investigated.
为了使性能更好,器件还采用了低反射率黑矩阵和光学补偿膜。
The display has been incorporated with a low_reflectance black matrix and optical compensation films for high_quality performance.
本文分析了产生这一现象的原因,并提出了用校正矩阵法可以成功地补偿有效数字的损失。
In this paper, the causes producing the above mentioned phenomena are analysed and a correction matrix method is presented in order to compensate for the loss of significant figures.
本文以三轴数控加工中心为例,利用齐次矩阵建立了完备的数控加工中心的位置误差补偿模型。
A general error compensation model of position accuracy for computer numerical control (CNC) manufacturing center is set-up by using homogeneous matrix.
在捷联惯导数字迭代算法中,姿态算法有效处理了导航坐标系旋转的影响,利用位置矩阵求解位置的方法很容易地解决了涡卷误差的补偿问题。
The rotation effect of navigation coordinate is well compensated in SINS attitude algorithms. Scrolling error compensation can directly be used in the position matrix update algorithms.
本文介绍了一种简化方法,供设计多变量控制系统时计算补偿传递矩阵及补偿网络之用。
This paper presents a simplified approach to evaluation of compensation transfer matrix and compensation network for designing multivariable control system.
利用矩阵的相似概念,本文提出一种多变量系统对角优势化和近似正规化的补偿方法。
A compensating approach to the diagonal domination and approximate normalization of multivariable systems is presented in this paper in view of the matrix similarity concept.
并且给出了实现某些典型输入下的最佳传递函数矩阵的鲁棒补偿器的设计方法。
Optimal transfer function matrix representation is derived. Robust compensator design for optimal transfer function matrix is also considered.
INA法的基本思想是通过选择预补偿器使原系统的逆前向传递函数矩阵成为对角优势阵,从而实现各输入输出变量之间的基本解耦。
The INA's basic idea is that, through selecting pro-(compensator, ) inverse pro-transitive function matrix of previous system can be changed into diagonal preponderance matrix.
利用琼斯矩阵方法对其进行系统的研究,结果表明其延迟量连续可调,满足补偿器要求。
The systematic study of this composite system is made by using Jones matrix method. The results show that the retardation can be adjusted continuously and satisfies the requirements of compensator.
利用琼斯矩阵方法对其进行系统的研究,结果表明其延迟量连续可调,满足补偿器要求。
The systematic study of this composite system is made by using Jones matrix method. The results show that the retardation can be adjusted continuously and satisfies the requirements of compensator.
应用推荐