算法原理简单,传感器节点无须任何附加硬件或附加数据通信,通信、计算复杂度较低。
It is simple to implement with low complexity in communication and computation. No additional hardware or data communication is required for sensor nodes.
这样做不但会产生用于发送指令的额外通信开销,更会在节点数量上升时由于协同算法计算量上升,从而导致整个系统的效率下降。
This will bring the extra communication cost for instruction delivery, as well as the efficiency decrease because of the increase of computation cost brought by increased nodes 'numbers.
GNP利用节点坐标和距离函数来计算网络距离,不会为了测量距离附带产生很多的通信流量,在优化性能上是一种轻量级的算法机制。
GNP USES node coordinates and distance function to calculate network distance, not to measure distance with a lot of communications traffic.
通过对IEEE-30节点系统的计算表明,本文所设计的禁忌遗传算法对于电力系统无功优化问题来说,是正确而有效的。
The computing results against the IEEE 30-node system prove that the method of reactive power optimization based on TSGA proposed in this paper is right and effective.
此外,讨论并通过实验证实了准瓶颈节点定义及算法的缺陷,并计算了一些网络特征量。
In addition, we argue and validate the limitation of the quasi-bottleneck nodes, calculate some mathematical character values of ne.
考虑到各个计算节点处理能力的不同,算法使用动态分配数据的方式来平衡各个节点的负载。
Considering the difference of each node's capability, this algorithm balances the load of all computing nodes by distributing data to each node dynamically.
该算法通过对校验节点传递给比特节点的信息进行有效简化,使计算复杂度接近“最小和”算法。
By simplifying the message sent from check nodes to bit nodes, the complexity of the algorithm approaches that of the "mini-sum" algorithm.
给水泵汽轮机模型采用TUPWR算法,给水泵系统采用SFPUMP算法,最小流量阀采用SOVLV算法,泵出口流量的关系采用压力节点进行计算。
TUPWR algorithm was adopted for the pump turbine model, SFPUMP for feed pump system, SOVLV for minimal flow valve, and pressure node for calculating the discharge rate of the pump.
本文提出了有限元软件结构计算简图中考虑包容性的“荷载自动分层标注算法”,以及结构简图的“基于节点的尺寸标注算法”。
This paper discusses the algorithm of automatically-layered-dimension of load which takes comprehension into account in structural-analysis sketch and the algorithm of dimension which based on joint.
该文提出一种基于虚拟力的异构节点网络覆盖增强算法,该算法由计算几何和改进的虚拟力算法组成。
This paper presents a coverage-enhancing algorithm for non-isomorphic node network based on virtual force, which consists of computational geometry and improved virtual force algorithm.
该算法利用网络中所有节点的局部信息保持网络的连通性,同时,利用最短路径算法计算链接权值的大小来进行拓扑结构的调整。
The algorithm maintains network connectivity only based on locally collected information and adjusts the topology structure according to the shortest-path algorithm by calculating the link weight.
分布式算法通过其边界协调方程来修正边界节点估计值,从而保证了计算的精度。
The DSE method modified the results of the boundary buses by the coordinate function, thus it ensures the calculating precision generally.
有限元算法。平面绗架结构的有限元分析,包括计算每个节点的作用力。
Planar lattice structure of finite element analysis, including the calculation of the force on each node.
利用计算几何的相关算法,把矢量数据的节点和边界线作为TIN网三角形的端点和边,对TIN网的局部进行三角化。
Utilizing related algorithms of computational geometry to triangulate TIN partly to make node and line as vertex and side of triangles.
计算机仿真结果表明,利用该模型算法可以发现拓扑图中关键节点,同时度量值均方差可以准确评估给定连通网络拓扑图的抗毁性能。
The simulation on PC shows that the algorithm can find the critical nodes in topology, and the mean square deviation can evaluate accurately the survivability for a given connected topology.
本文提出的方法在目的端利用获得的中间节点位置信息来生成无向图,再利用广度优先遍历算法BFS计算出另外一条不相交路径。
This method USES intermediate nodes' location information to create undirected graph at destination node, and USES Breath-First Search (BFS) algorithm to find another disjoint path.
通过对IEEE 30节点系统计算并与其他算法比较,结果表明采用该优化规划的算法能有效地降低网损、提高系统电压稳定裕度。
This algorithm is used in IEEE-30 buses system and the result indicates that the optimization algorithm not only can decrease the power loss but also can improve the system voltage stability margin.
首先,针对传统连续潮流算法在计算负荷裕度时遇到的平衡节点发电机无功约束问题进行了研究,提出了平衡节点无功约束的连续潮流负荷裕度算法。
Firstly, the problem of reactive power constrains of generator at slack bus is studied, and a load margin algorithm of continuation power flow of reactive power constrain at slack bus is proposed.
介绍了系统开发的关键技术:模型简化、节点划分、平面图形截面特性的计算、强度计算的算法及分析结果的输出形式。
The key techniques such as model simplification, node division, section feature calculation, strength calculation method and result output format are introduced.
提出考虑配电馈线环网和节点零注入的基于支路电流的状态估计算法。
Considering meshed network of distribution feed lines and node zero injection, we put forward a algorithm of status estimation based on branch currents.
文章提出了一种水声网络探测节点的运动目标参数估计方法,即基于模型匹配原理的估计算法。
A moving target parameters estimation algorithm, which is based on the principle of model matching and used for underwater acoustic networks detection nodes, is proposed in this paper.
算法在固定间隔时间点利用分类信息进行节点的负载计算,并且在转发请求时按照组内的转发概率进行转发。
At a fixed interval of time the algorithm USES classification information to calculate the load of nodes, and forwards the request in accordance with the forwarding probability within the group.
该算法通过模拟物理弹簧系统的动态变化,来计算节点的位置坐标。
The algorithm simulates the dynamics of the physical spring system to estimate the positions of nodes.
本算法在高性能计算机集群MPI环境中并行实现时,采用主从模式设计程序,合理调配各节点的计算负载,并应用容错处理手段,达到了较高的并行效率。
The method was realized in powerful cluster MPI computing environment using master-slave model. Strategies of load relocation on different nodes and fault-tolerance were adopted.
通过对IEEE118节点系统中的仿真计算,验证了改进算法的快速性、准确性、实用性。
Based on the simulation and calculation in IEEE118 buses system, the improved method has characteristics of fast computation speed, accuracy and practicability.
改进的冗余树算法同冗余树算法相比不但有效的降低了组播树中节点数目,而且其计算时间也相对较少。
The advanced redundant tree algorithm reduces the number of nodes in multicast tree and the run time compared with the redundant tree algorithm.
与集中式分类算法相比较,基于移动代理的分布式分类算法可以减小带宽需求,平衡各个节点之间的计算、存储和能量消耗。
Compared with the centralized classification algorithm, the proposed algorithm can reduce the bandwidth requirement, and balance the computation, storage and power consumption among sensor nodes.
首先通过参数估计算法,从接收信号中提取相关参数,然后利用相应的定位算法求解节点或终端的位置。
First of all, extract the related parameters from the received signal, and then use the appropriate positioning algorithm for the location of the node or terminal.
首先通过参数估计算法,从接收信号中提取相关参数,然后利用相应的定位算法求解节点或终端的位置。
First of all, extract the related parameters from the received signal, and then use the appropriate positioning algorithm for the location of the node or terminal.
应用推荐