展望:分析个人数据,更多知识领域及自然语言查询编程。
Looking Ahead: Analyzing Your Own Data, More Knowledge Domains, Programming with Natural Language queries.
对数据库受限汉语自然语言查询语句进行分词处理。
This paper describes the word segmentation of database natural language query based on restricted Chinese.
如何建立一个简单适用的系统词典是自然语言查询系统研究工作的基础和难点之一。
How to build a simple and appropriate system dictionary is one of the foundation and difficulty of our research work.
中文数据库自然语言查询技术大大简化了人机交互的过程,使用户可以只以应用领域的概念访问数据库。
Database Query via natural Chinese simplifies the process of Human Computer Interaction; users could visit to the database using the concept of application field.
设计和实现了汉语数据库自然语言查询接口系统(IDCQ),系统包括正则分词子系统和对象语义解析子系统;
The design and implementation of the Interface for Database Query in Chinese (IDCQ). The system includes regular word segmentation subsystem and object semantic analysis subsystem.
在数据库查询系统中应用自然语言理解技术,设计数据库自然语言查询接口,已成为自然语言研究中最具有广泛应用前景的方向之一。
Using NLU technology in the database query system and designing NLQID (natural language query interface of database) has become one of the most hopeful applied fields in the research on NLU.
基于这个功能,Mathematica用户也许很快可以通过类似于在WolframAlpha中使用的自然语言查询来编写和操作他们的代码。
By building on this capability, Mathematica users may soon be able to write and their code using natural language queries just like in Wolfram Alpha.
使用这个特性,ClearQuestWeb用户就可以使用自然语言查询,来搜索任何的ClearQuest记录了,就像使用基于Web的搜索引擎一样。
With this feature a ClearQuest Web user can search any ClearQuest record using natural language queries, just like using a Web based search engine.
对于数据库查询,这些控件产生自然语言输出,而不是接受自然语言输入。
These controls produce natural language as output, rather than attempting to accept natural language as input, for database queries.
一个完全的自然语言数据库的存取通常需要既支持查询,也需要支持更新。
Full natural language database access requires support of both query and update capability.
本文提出了一种信息检索模型,以自然语言的形式进行检索,得到用户想要得到的内容,进而提高查询的准确性。
This paper provides an information retrieval model, and it retrieves in way of natural language, gets the content what the users want, so it can improve the retrieval precision.
该模型利用自然语言处理技术,在语义层次上进行查询和检索,克服了传统检索方法的不足,提高了查全率与查准率。
This model retrieves information on semantic using natural language processing technique so as to overcome the shortcoming of traditional retrieval methods and enhance efficiency.
本文提出一种适用于管理信息系统中关系数据库查询的自然语言接口模型。
In this paper, an interface model of the natural language is proposed, which is suitable to the query of relational database on MIS.
计算机对自然语言中的查询语言理解的正确程度是自然语言接口质量好坏的关键。
The accuracy of computer understanding query of natural language is key to the quality of the natural language interface.
在应用范围受限的条件下,提出了主要以自然语言中的关键词构造模式库来映射查询语句的思想方法;
On the condition of limited application range, we proposed a method for mapping the natural language to SQL query language, which is based on the pattern recognition.
最后,探讨了GIS中自然语言空间关系查询请求表达的句法模式及其解析方法。
Finally, a few syntactic patterns are presented for query representation of natural-language spatial relations in GIS.
基于贝叶斯网络的XML文档查询选择模型:用户输入自然语言描述的查询后,系统根据文档集合的结构将其构造成多个结构化查询。
The query selecting model of XML documents on Bayesian network: After user inputs the natural query, system constructs several structured queries according to the structure of the document collection.
论文的主要贡献如下:1、提出了一种基于自然语言识别的智能查询模型。
The paper brings forward a new intelligent retrieval model basing on Recognition of Natural Language.
该文针对当前研究的热点问题——界面层自然语言理解的应用,设计了一个基于面向对象设计方法的受限自然语言数据库查询系统。
This paper aims at a hot researched question-the application of natural language comprehension in interface, designs a limited nature language database query system based on object-oriented design.
考虑到传统查询只能处理精确的数据,使得这种查询不能应用于自然语言中的模糊概念。
Conventional queries can only deal with exact data, and cann't be applicable to fuzzy concepts.
考虑到传统查询只能处理精确的数据,使得这种查询不能应用于自然语言中的模糊概念。
Conventional queries can only deal with exact data, and cann't be applicable to fuzzy concepts.
应用推荐