研究了具有线性脉冲作用的常微分系统平衡态的稳定性问题。
The stability of equilibria of ordinary differential systems with linear impulse is discussed.
第五章,在讨论了上述稳定性的基础之上,把上述方法应用到脉冲控制微分系统上。
In the final chapter, some approaches mentioned above are also utilized to deal with impulsive control differential systems.
针对一般形式的常微分系统提出了脉冲指数镇定的概念。
Concepts of impulsive exponential stabilization for general differential systems are proposed.
在此基础上提出了利用输出电压的脉冲微分反馈对这类电路系统中的混沌进行控制的方法。
Then based on the above analysis, we present the method of using output voltage pulse differential feedback to control chaos in the buck converter.
运用李雅普·诺夫直接方法研究了脉冲微分系统及其摄动系统关于两个测度的实际稳定性。
The practical stability in terms of two measures of impulsive differential systems and its perturbed systems is developed by Lyapunov direct method.
本文研究马尔可夫调制的随机泛函微分系统和脉冲泛函微分系统的稳定性。
In this dissertation we consider the stability of stochastic functional differential systems with Markovian switching and functional differential systems with impulses, respectively.
考虑连续广义系统的圆形区域极点配置问题,采用微分状态反馈的方法设计控制律使得闭环系统正则,无脉冲且闭环极点位于给定的圆形区域内。
The objective was to design derivative state feedback controllers so that the closed-loop system was regular, impulse-free, and the closed-loop poles was to be placed in a given region.
在脉冲微分系统的理论方面,重点研究了脉冲微分系统的渐近性。
With regard to the theory of impulsivedifferential system, this dissertation focuses on the asymptotic behavior of the impulsivedifferential system.
用拉普拉斯变换式对微分方程进行变换,把输出和输入联系起来,得到脉冲响应与系统输入输出之间的对等关系。
Laplace transform is used to combine output and input, then the impulse response and equivalent operations of system input and output are gained.
然后,应用脉冲微分方程理论里的比较系统方法,首次用来研究部分线性系统的投影同步问题。
Then, we first use the impulsive control approach to control the scaling factor of projective synchronization onto any desired scale.
然后,应用脉冲微分方程理论里的比较系统方法,首次用来研究部分线性系统的投影同步问题。
Then, we first use the impulsive control approach to control the scaling factor of projective synchronization onto any desired scale.
应用推荐