研究了非线性脉冲微分方程零解的最终稳定性。
This paper investigated the eventual stability of the zero solution of nonlinear impulsive differential systems.
研究了非线性脉冲微分方程零解的最终稳定性。
The asymptotic behavior of linear impulsive differential equations is studied.
本文研究脉冲微分方程的解的存在性与定性性质。
This paper studies the existence for solutions and qualitative properties of impulsive differential equations.
得到一个关于脉冲微分方程弱指数渐近稳定的判定定理。
The sufficient conditions of the weak exponential asymptotic stability of impulsive differential system are obtained.
目的研究一阶具有分段常数变量的脉冲微分方程的解的性质。
Objective to investigate characters of the solution to first order impulsive differential equations with piecewise constant arguments.
第三章研究了脉冲微分方程周期边值问题正解和奇异边值正解的存在性。
Chapter 3 concerns positive solution of impulsive periodic boundary value problem and singular impulsive boundary value problem.
在第二部分中,同样的方法,我们讨论了一阶脉冲微分方程积分边值问题。
In part II, by the same way, we consider first-order impulsive differential equations with integral boundary value problems.
利用锥上的不动点定理讨论了一阶脉冲微分方程周期边值问题的正解的存在性。
By using the fixed point theorem on cone, this paper studies the existence of positive solutions for first order periodic boundary value problem with impulses.
然后,应用脉冲微分方程理论里的比较系统方法,首次用来研究部分线性系统的投影同步问题。
Then, we first use the impulsive control approach to control the scaling factor of projective synchronization onto any desired scale.
通过构造差分方程的周期数列解,研究了一类具有分段常数变元的脉冲微分方程周期解的存在性。
The existence of periodic solutions for a class of impulsive differential equations with piecewise constant argument is studied by constructing periodic sequence solutions of difference equation.
用黎卡堤变换研究如下二阶非线性脉冲微分方程( 方程式略)得到了两个判断方程振动的充分条件。
Oscillation of a kind of second order nonlinear differential impulsive equation(The equation is abbreviated), is studied and some sufficient conditions are obtained.
利用时滞脉冲积分不等式,给出了一类非线性的脉冲时滞微分方程的解有界性的充分条件。
Sufficient conditions for boundedness of solutions of nonlinear delay differential equations with impulses are established by using impulsive integral inequalities with a deviation.
本文给出了描写脉冲MOS电容器的瞬态特性的微分方程。
A differential equation, which describes the transients of pulsed MOS capacitors, is derived.
用微分方程定性理论结合数值模拟方法研究了窄脉冲方程的广义扭结波。
The generalized kink waves of the short pulse equation were studied by the qualitative theory of ordinary differential equations and numerical simulation method.
目的研究脉冲中立型微分方程正解的存在性。
Aim To investigate the existence of positive solutions for impulsive neutral differential equations.
研究了三阶非线性脉冲时滞微分方程解的振动性与渐近性,得到了一些充分判据。
The oscillation and asymptotic behaviors of three order nonlinear functional differential equation with impulses are investigated, and some sufficient conditions are obtained.
该文讨论由经典-脉冲混合控制最优策略中提出的一类常微分方程的自由边值问题,给出了该问题解的存在性定理。
This paper discusses a class of free boundary value problem of ordinary differential equations occurred in problems of classical mixed and impulse optimum control in research fund management problems.
用拉普拉斯变换式对微分方程进行变换,把输出和输入联系起来,得到脉冲响应与系统输入输出之间的对等关系。
Laplace transform is used to combine output and input, then the impulse response and equivalent operations of system input and output are gained.
因此研究退化、脉冲时滞微分方程解的性态具有重要的现实意义。
So, it has a practical significance to study the character of solutions of either degenerate differential system with delay or impulsive differential equations with delays.
本文主要讨论了两类二阶脉冲时滞微分方程的渐近性态及振动性。
In this paper, we consider the oscillatory and asymptotic behavior of two kinds of two order impulsive functional differential equations.
脉冲双曲型偏微分方程振动性高阶Laplace算子。
Impulse hyperbolic partial differential equation oscillation higher order Laplace operator.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
应用推荐