B2B网络技术自身并不能改变企业内部的依存关系,但当它被引入到新的合作机制里面后,它就能提升企业之间的相互依存水平了。
B2B networks introduced for the new collaboration increases the level of interdependency between firms, while the B2B network alone does not significantly alter the level of inter-firm dependency.
网络道德是随着网络技术的广泛应用而出现的调节网络主体间相互关系的行为规范的总和。
Network morality, which is the behavior criterions' summation, can adjust the network 's main body interrelation and it appears with the extensive application of the network technology.
本文引入神经网络技术,用以研究碳酸盐岩测井信息与岩心分析孔隙度的关系,并由此预测储层孔隙度。
The relation between carbonate rock logging information and core analysis porosity is studied by neural net technique to forecast reservoir porosity in this paper.
本研究用机器视觉及神经网络技术建立鸡蛋的新鲜度(哈夫值)与鸡蛋光信息参数之间的相关关系,进行鸡蛋新鲜度无损检测与分级。
The relevant relation is established between egg fresh degree (Haff value) and the egg information parameter with machine vision and neural network technology in this research.
该方法通过神经网络技术的非线性算法,在声波曲线与自然电位、电阻率、自然伽马等多条测井曲线之间建立一种非线性关系。
The method, by means of non-linear algorithm of neural network technology, is used to set up a non-linear relation among sonic log curve, SP, Rt, Gr and curves.
应用神经网络技术分析了决策露天采矿工艺选择各因素的主次关系,通过模糊决策优化了露天采矿工艺方法。
This paper analyses the importance of each factors that decide the surface mining technology by using of the neural network, optimizes the surface mining technology by using of the fuzzy decision.
企业内部的决策和方法的改变推动了组织依存关系层次上的提升,使得这一切变为可能的,正是B2B网络技术。
This increases in the level of organizational interdependency is driven by changes in inter-firm processes and policies, which are enabled by the B2B network technology.
以铸钢冷却壁的传热为研究对象,根据热态试验结果,提出简化传热关系式,并将其与神经网络技术相结合,形成冷却壁热面温度预测仿真模型。
Heat transfer of cast steel cooling stave is the research object, and simplified heat transfer formula is proposed based on thermal state test results.
以铸钢冷却壁的传热为研究对象,根据热态试验结果,提出简化传热关系式,并将其与神经网络技术相结合,形成冷却壁热面温度预测仿真模型。
Heat transfer of cast steel cooling stave is the research object, and simplified heat transfer formula is proposed based on thermal state test results.
应用推荐