抛物线形缓坡方程波浪数学模型是进行大范围波浪计算的有效方法。
Wave mathematical model of parabolic gentle slope equation is an effective method for calculating waves of wide scope.
数值计算的结果表明,该数值模型可有效地应用于双曲型缓坡方程的数值求解。
The numerical results show that the numerical model used in the paper can be effectively used in the numerical simulation of the hyperbolic mild slope equation.
使用抛物型缓坡方程和修改抛物型缓坡方程研究了双圆形浅滩地形的波浪折射绕射。
Parabolic mild slope equation and modified mild slope equation are applied to solve refraction diffraction of waves over twain circular shoal.
提出了椭圆型缓坡方程的一种并行数值模拟方法,并在微机群集并行系统上进行了数值实现。
A parallel solution method is proposed for the simulation of the elliptic mild slope equation and implemented on a personal computer cluster.
本文最后用该显式结合含弱非线性效应的缓坡方程,对复式浅滩地形上的波浪折射绕射进行了计算。
Making use of the explicit nonlinear formulation derived in this paper and the mild slope equation with weak non-linearity calculations are conducted for wave transformation in the compound shoals.
将其应用于含弱非线性效应的缓坡方程进行数值验证,结果表明,采用新的非线性弥散关系得到的计算结果与实测结果更为吻合。
The results show that the model using the new dispersion relation can predict the wave transformation over the complicated bathymetry quite well.
将波浪辐射应力与抛物型缓坡方程中的待求变量联系起来,提出了一种计算辐射应力的新方法,并用有限差分法对控制方程进行了数值求解。
A new method for the solution of wave radiation stresses is proposed by linking wave radiation stresses with the variables in the parabolic mild-slope equation.
将波浪辐射应力与抛物型缓坡方程中的待求变量联系起来,提出了一种计算辐射应力的新方法,并用有限差分法对控制方程进行了数值求解。
A new method for the solution of wave radiation stresses is proposed by linking wave radiation stresses with the variables in the parabolic mild-slope equation.
应用推荐