本文在矩阵损失下研究了一般增长曲线模型中随机回归系数线性估计的可容许性。
We investigate the admissibility of the linear estimate of random regression coefficients under a matrix loss function in general growth curve models.
对一般线性回归模型中有关参数估计分布的模拟问题,给出一种随机加权逼近的再构造方法。
A reconstructing method for random weighting approximations is proposed in approach to the distributions of the parameter estimates in general linear regression model.
针对一个线性回归模型的系统矩阵存在的随机扰动情况,提出一种基于均匀设计的稳健参数估计算法。
A robust parameters estimation algorithm is proposed in this paper, which is based on uniform design for a linear regression model in the case of its coefficient matrix with random disturbance.
主要考虑了同方差型的半参数线性回归模型中参数的随机加权最小二乘估计(RWLSE)。
The randomly weighted least square estimator (RWLSE) for the parametric component in semi-parametric regression models was mainly discussed.
提出了一种用随机加权的方法去逼近线性回归模型中M-估计的渐近分布。
Rao and Zhao (1992) developed the random weighting method for M-estimates in regression models.
作者应用随机模型中多元线性回归的方法建立了沈阳地区地下水位动态变化模型。
A model showing dynamic change of groundwater level for Shenyang area is set up, using the method of multivariate linear regression in random model.
应用线性回归分析和移动平均理论,对按时间次序排列的单一数据序列,给出了一种线性移动自回归预测模型,并对原始数据受不确定因素影响而产生的随机振荡,给出了合理的控制区间和运行通道。
The theory of linear regression and the theory of moving average are applied to analyse single data in time series, the model of a linear moving self regression forecast are given out.
同时考虑样地的随机效应、观测数据的时间序列相关性及不同初植密度的混合模型模拟精度比传统的非线性回归方法模拟精度高。
The precision of mixed model considering plot random effects, time series error autocorrelation and different plantation density at one time is better than that of ordinary regression analysis method.
同时考虑样地的随机效应、观测数据的时间序列相关性及不同初植密度的混合模型模拟精度比传统的非线性回归方法模拟精度高。
The precision of mixed model considering plot random effects, time series error autocorrelation and different plantation density at one time is better than that of ordinary regression analysis method.
应用推荐