非线性系统的微分几何理论是目前研究非线性系统控制的一个重要方法。
Differential geometry method is an important approach in the researches of control of nonlinear system.
把非线性系统的微分几何理论与混沌系统的同步控制目标相结合,设计了蔡氏电路混沌系统的标量混沌信号同步控制的非线性反馈控制器。
Combining the nonlinear control system theory and the aim of chaos synchronization, we designed a nonlinear feedback controller for synchronizing the scalar output signal of Chua's Circuits system.
分形理论主要描述自然界和非线性系统中不光滑和不规则的几何形体,它为植物形态的模拟提供了描述语言和理论基础。
Fractal theory mainly describes the nature and nonlinear system objects which are not smooth and irregular, it also provides description language and theoretical basis for plant simulation.
不同于其他控制方法,微分几何控制理论是本质上对非线性系统进行处理的方法。
Be different from other control methods, differential geometry deals with nonlinear problems in substance.
分形理论是非线性系统理论中最为活跃的分支之一,研究的是复杂系统产生的不光滑、不可微分的复杂几何体。
Fractal theory is the most active branch of the non-linear science, what it concerns is non-smooth and non-differential geometry produced by complex systems.
摘要:分形理论是描述非线性系统中不规则的几何形体的有效工具,应用领域十分广泛。
Absrtact: the fractal theory is an effective tool to describe irregular geometry form and structure in nonlinear system and its application is greatly wide.
摘要:分形理论是描述非线性系统中不规则的几何形体的有效工具,应用领域十分广泛。
Absrtact: the fractal theory is an effective tool to describe irregular geometry form and structure in nonlinear system and its application is greatly wide.
应用推荐