并由此讨论了紧致的非单连通黎曼流形上无穷多的闭测地线存在性问题。
Also, the paper discuss the existence of the infinite closed geodesics of a compact no-simply connected Riemannian manifold.
研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形。
The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.
通过计算全测地子流形的基本群,确定了紧正规黎曼对称空间的极大的极大秩全测地子流形的整体分类。
In this paper, the authors give the globally classfication of the maximal totally geodesic submanifolds with maximal rank of normal Riemannian symmetric Spaces by computing the fundamental group.
设m是紧致连通的黎曼流形。
使得对拟常曲率黎曼流形中紧致子流形的研究由极小子流形和伪脐子流形情形扩展到具有平行平均曲率向量的情形。
The work makes the study of compact submanifolds in quasi constant curvature Riemannian manifolds extend from the especial case to general case.
使得对拟常曲率黎曼流形中紧致子流形的研究由极小子流形和伪脐子流形情形扩展到具有平行平均曲率向量的情形。
The work makes the study of compact submanifolds in quasi constant curvature Riemannian manifolds extend from the especial case to general case.
应用推荐