在研究紧度量空间上流的分解时,C。
Studying the decomposition of flows in compact metric space, c.
本文在紧度量空间中,讨论了压缩型映象的不动点问题,推广和改进了某些已知结果。
The paper is to discuss the fixed point theorems for contractive type mappings in compact matric spaces, the results improve and extend the results of .
给出紧度量空间上连续映射按序列分布混沌的一个充分条件,并证明区间连续自映射是混沌的当且仅当它是按某序列分布混沌的。
As an application, it is proved that a continuous map of an interval is chaotic iff it is distributively chaotic in a sequence.
在第二章中,我们讨论紧致度量空间上连续自映射的可链点集的性质,特别是链回归点的可链点集的性质。
In Chapter Two, we discuss properties of the set of chainable points of a continuous self-map fon an impact metric space, especially those of chain recurrent points.
本文给出紧致度量空间逐点伪轨跟踪性质的定义,该定义是伪轨跟踪性质定义的推广。
In this paper, the pointwise pseudo-orbit tracing property is defined on a compact metric space, and it is a generalization of pseudo-orbit tracing property.
通过拓扑链回归概念,在非紧致度量空间中引入一类特殊的流———非紧致流,同时给出该类流的一些特性和实例。
According to the concept of topological chain recurrent, a special flow "non-compact flow" is introduced on metric space, some properties and examples of this flow are given.
本文研究了紧致度量空间上连续自映射及连续半流的不变测度。
In this paper, we study the invariant measures of a continuous map and a continuous semi-flow on a compact metric space.
利用局部紧的条件,将多目标优划问题的灵敏度分析由度量空间推广到拓扑线性空间,得到了更一般的结果。
The paper investigates sensitivity analysis of multiobjective optimization in locally compact topological vector spaces instead of metric spaces and obtains much more general results.
给出了紧致度量空间上连续自映射的周期点集具有局部度量稳定性的必要条件和充分条件。
In this paper, a necessary and a sufficient condition for the continuous map on a compact metric space whose set of period points has the property of locally metric stability is obtained.
给出了紧致度量空间上连续自映射的周期点集具有局部度量稳定性的必要条件和充分条件。
In this paper, a necessary and a sufficient condition for the continuous map on a compact metric space whose set of period points has the property of locally metric stability is obtained.
应用推荐