解决了三素数定理推广到素数取自算术级数的问题。
Every large odd integer can be represeted as the sum of three primes which take from arithmetic progressions.
在筛法和费尔马小定理的基础上,利用索阶乘及判别数对如何判别一个整数是否是一个素数的算法加以改进。
The algorithm of distinguishing prime number is improved on the basis of Eratosthenes' sieve method and Fermat 's minor theorem.
RSA公钥密码算法的基础是欧拉定理,它的安全性依赖于大素数因式分解的困难性。
RSA Public Cryptogram algorithm is based on Theorem of Euler, whose security depends on the difficulty about the factor decomposed of great number.
文章运用数论中的一些简单结果,如辛达拉姆筛法与威尔逊定理,建立了哥德巴赫猜想、孪生素数猜想以及费马素数猜想的等价命题。
This paper sets up equivalent propositions of Goldbach's Conjecture and Twin Prime Conjecture and Fermat's Conjecture for prime numbers by using the simple result among the number theory.
本文介绍了素数的一些基本性质,并探讨了素数的一些其他非常见性质与定理。
This article has introduced some common basic natures of prime Numbers, and has discussed other non-common natures and theorems of prime Numbers.
基于初等数论中的一些基本定理,本程序利用概率算法,快速判定一个大数是否为素数。
Based on some basic theorems in theory of Numbers this program takes advantage of probabilistic algorithm to test a large number for primality.
本文给出了华罗庚五素数平方定理的算术级数形式,证明了其中一个素数可以取在大模的算术级数中。
In this paper, we generalize Hua's five primes squares theorem, and prove that one of the primes can be taken in arithmetic progressions with large moduli.
利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
We present several theorems on the distribution of prime powers. These results play a very important role in providing explicit bounds for the asymptotic existence theorems of RBIBD and PMD.
利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。
We present several theorems on the distribution of prime powers. These results play a very important role in providing explicit bounds for the asymptotic existence theorems of RBIBD and PMD.
应用推荐