它是用微分算子矩阵方法研究广义动态系统的开端。
The polynomial matrix criteria of controllability and observability related to such systems are presented.
通过对算子矩阵和地震波场矩阵进行多分辨分解和压缩,得到了小波域中地震波场正演模拟算法。
Through the multiresolution decomposition and compression of operator matrix and seismic wave field matrix, we proposed a new method of seismic modeling in wavelet domain.
利用正交多项式序列的正交性及微分算子矩阵,论述了时变非线性分布参数系统参数估计的正交多项式法。
New method of parameter estimation for time varying non linear distributed systems is proposed in term of orthogonality of orthogonal polynomial and differential operation matrix.
给出了一类二阶算子矩阵生成C0半群的一个充分条件,并应用此条件证明了一类具体的二阶算子矩阵可生成C0半群。
A sufficient condition is obtained for a class of second order operator matrices to generate C0 semigroups.
线性转换及线性运算子,特征值扩展,以矩阵表示线性运算子。
Linear transformations and linear operators, eigenvector expansion, matrices as representations of linear operators.
流代数的基本概念是各种“流”算子的矩阵元在物理实验中是可以测量的。
The essential idea of current algebra is that matrix elements of various "current" operators are measurable in physical experiments.
同时也刻画了布尔代数上强保持交换矩阵对的线性算子。
And also we characterize the linear operators that strongly preserve commuting pairs of matrices over Boolean algebras.
谱论是泛函分析的一个近代重要分支,由矩阵特征值构思出算子的谱。
Spectral theory is an important branch of functional analysis in modern times the operator spectra projected from matrix eigenvalue.
本文刻画了布尔代数上强保持交换矩阵对的线性算子。
In this paper, the linear operators that strongly preserve commuting pairs of matrices over are characterized.
利用这个变换矩阵可以方便地将笛卡尔坐标的张量表达式、微分算子及有关公式变换成正交曲线坐标的相应公式。
Using the cosine transform matrix the Cartesian tensors, differential operators and related equations can be readily transformed into corresponding expressions in orthogonal curvilinear coordinates.
线性保持问题(简称LPP)刻画在矩阵空间上保持特定的函数,子集,关系等不变的线性算子。
Linear preserver problem (LPP for short) concerns the characterization of linear operators on matrix Spaces that leave certain functions, subsets, relations, etc.
引入了卡氏和张量混合积空间上的对称化算子和相应的分块矩阵上的混合矩阵函数,给出了关于它们的若干关系式。
Symmetrizing operators on mixed cartesian and tensor product spaces and corresponding mixed matrix functions on partitioned matrices are introduced. Some relation formulae on them are given.
刻画了在非负无零因子交换半环上强保持可逆矩阵的线性算子。
The linear operators that strongly preserve invertible matrices over some antinegative commutative semirings with no zero divisors were characterized.
在矩阵算子实现信号分离的前提下,建立了关于信号方位参数的多维优化问题—即所谓的多维(MD-)松弛(RELAX)算法。
Under the hypothesis of the given matrix operators satisfying the signals separation, the multi-dimensional optimum about the signal azimuth, and the multidimensional(MD-)RELAX , was established.
在研究梯度矩阵的同时,本文还给出了一种新的梯度算子。
A new gradient operator was presented for studying gradient matrix.
系统的哈密顿函数是作为矩阵微分算子的狄拉克算子,它不是半有界的。
The Hamiltonian of the system is the Driac operator which as a matrix differential operator is not semibounded from below.
通过对时间表问题的认识,设计了求解该问题的遗传算法。给出了矩阵编码,和针对矩阵行、列操作的遗传算子并给出了一个实例。
This paper design the generic arithmetic about the Time Table Problems, give out the matrix coding and generic arithmetic operators base on matrix row, line. A example is given.
本文证明了关于张量空间的对称化算子的矩阵表示的一个重要结论。
A result of fundamental importance has been proved with regard to the matrix representation of symmetrizing operator on tensor space.
全变换方法用于处理每一边界约束点,对刚度矩阵和位移矢量作相应的算子运算。
The full transformation method deals with each boundary constraint node, and for stiff matrices and displacement vector, using operator transformation, relative operator calculation is performed.
该方法可利用均值-方差间关系等先验知识来构造加权矩阵,并利用二维局部空间信息来构造惩罚项或正则算子。
It utilizes the prior variance -mean relationship to construct the weight matrix and the two -dimensional (2d) spatial information as the penalty or regularization operator.
本文刻画了整环上的全矩阵空间、对称矩阵空间和上三角矩阵空间上保持伴随矩阵的线性算子的结构。
In this paper, we characterize the linear operators preserving adjoint matrices on the Spaces of all matrices, symmetric matrices and upper triangular matrices over domain.
该方法基于传播算子思想,直接利用阵列接收信号估计噪声相关矩阵,得到一种快速TCT聚焦矩阵。
Based on the propagator method, noise correlation matrix is constructed by array signals and a fast TCT focusing matrix is developed.
针对矩阵编码提出的特殊交叉算子和变异算子,能保证生成的新个体总是有效的。
A new crossover and mutation operation suitable for the matrix code is developed, and they can ensure that the new initial chromosomes are always feasible.
刻划了特征不为2及3的域上的上三角矩阵空间保逆矩阵的可逆加法算子的形式。
The authors characterize the forms of additive invertable operators preserving inverse matrix of the upper triangular matrix space over a field which characteristic is not 2 or 3 .
刻画了在非负无零因子交换半环上强保持可逆矩阵的线性算子。
Then T is an invertible linear operator preserving rank - partial ordering on Sn(F) if and only if there exists an invertible matrix (F) such that where .
结合旋量理论与递推算子可以直接得到易于计算机编程实现的广义雅可比矩阵。整个计算过程简单、效率高。
Then it can avoid the analysis of the coupling between base and manipulator, so the Jacobian matrix can be achieved simple and efficiency.
以弹性波为重点,评述了三锥散射算子关系及其在逆散射中的应用。为便于理解,在介绍过程中,还仔细描述一维球对称情况下散射矩阵和逆散射方程推导。
The three-dimensional scattering operator formulations with application in the three-dimensional inverse scattering are reviewed with emphasis on the elastic wave case.
利用矩阵和不变集的方法证明在非游荡算子的一充分小的领域内,非 游荡算子保持它的非 游荡性不变。
It is proved that nonwandering operators keep their property of nonwandering on this small neighborhood by the methods of matrices and invariant set.
利用矩阵和不变集的方法证明在非游荡算子的一充分小的领域内,非 游荡算子保持它的非 游荡性不变。
It is proved that nonwandering operators keep their property of nonwandering on this small neighborhood by the methods of matrices and invariant set.
应用推荐