给出了关于右等价群有限决定的光滑函数芽在函数芽运算下仍保持有限决定的一些充分条件。
In this paper are given some of sufficient conditions for finite determinacy relative to right equivalent group of smooth function-germs to be preserved under the operation of function germs.
在什么条件下两个分歧问题关于某一等价群而言是等价的,这在分歧理论研究中是很有意义的。
An interesting problem in the study of bifurcation theory is to determine when two bifurcation problems are equivalent with respect to some group of equivalences.
本文对光滑函数芽在右等价群的各种子群下的有限决定性展开了研究,对光滑函数芽在函数芽运算下关于右等价群的有限决定性也进行了讨论。
In this paper, we carry out a research into the special case, that is the finite determinacy of smooth function germs under various subgroups of right equivalent group.
设G为局部紧群,在一致连续函数空间U( G)上,用两种方法证明左不变平均和拓扑左不变的等价性。
On uniformly continuous function space U(G), Equivalence of invariant mean and topological invariant mean is showed by two methods.
本文通过对合交换半群概念的引入,对MV-代数建立了几组等价公理系,对原有的公理系进行了较好的简化。
In this paper, we introduce the notion of involution commutative semi-group, and give some equivalence axioms of MV - algebras.
给出群关于其子群的相对同调的一个等价刻划。
In this paper, an equivalent description of the relative homology is given.
介绍弱左正则幺半群的概念,指出在可交换半群中,完全正则、弱左(右)正则和完全幂等是等价的。
In this paper, we introduce the notion of left weakly regular semigroup and show that in a commutative semigroup, the complete regularity, regularity, left resp.
本文对一致空间上的群作用,用等度连续性刻画了几乎周期的性质,并且论证了一致等度连续的群作用拓扑等价于一等距的群作用。
We characterize almost periodicity with equicontinuity, and prove that if the group is uniform equicontinuous then it is topologically equivalent to an isometric one.
本文对一致空间上的群作用,用等度连续性刻画了几乎周期的性质,并且论证了一致等度连续的群作用拓扑等价于一等距的群作用。
We characterize almost periodicity with equicontinuity, and prove that if the group is uniform equicontinuous then it is topologically equivalent to an isometric one.
应用推荐