利用该弱极大值原理,证明了对于第一类、第二类和第三类边值问题,水汽方程解的唯一性和稳定性。
By using the weak maximum principle, the uniqueness and stability of the solution of water vapour equation with the first, second and third boundary-value problems were proven.
本文讨论描述流体在稀疏介质中流动规律的一类拟线性抛物型方程具有第三类非线性边界条件的初边值问题。
This dissertation is to discuss the laws of fluids in porous medium for original boundary value problem of some quasi-linear parabolic equations with the third type nonlinear boundary condition.
讨论了一类半线性抛物型方程具有第三类非线性边界条件的初边值问题。
It is discusses that the initial-boundary value problem under the third non-linear boundary condition for a kind of semi-linear parabolic equation.
讨论了一类半线性抛物型方程具有第三类非线性边界条件的初边值问题。
It is discusses that the initial-boundary value problem under the third non-linear boundary condition for a kind of semi-linear parabolic equation.
应用推荐