电力系统暂态功角失稳模式同相关不稳定平衡点密切相关。
A transient Angle unstable mode of power system closely relates to a controlling unstable equilibrium point (UEP).
当该控制律作用于系统时,原点是闭环系统的渐近稳定平衡点。
When the control laws applied to the systems, the origin is the asymptotically stable equilibrium point of the closed-loop systems.
提出了一种基于伴随系统理论的电力系统主导不稳定平衡点的求解方法。
A new method based on the theory of adjoint systems to compute the controlling unstable equilibrium point is presented.
在采样数据反馈控制中,只要利用一个参数便将系统控制到非稳定平衡点。
The single parameter sampled data feedback control directs the system to unstable equilibrium point with only one parameter.
本文目的是给出判别几类神经网络存在唯一全局指数稳定平衡点的实用有效的判据。
In this thesis, the feasible criteria of several ANNs to criticize existence of the unique global exponential stable equilibrium.
常用电力系统P-V曲线的下半部分包含有不稳定平衡点随功率P变化的丰富信息。
The lower part of PV curve contains abundant information about UEP bifurcating as power changes.
主导不稳定平衡点(CUEP)的计算在电力系统暂态稳定分析直接法中具有重要意义。
Calculation of the controlling unstable equilibrium point (CUEP) is important in the direct method for power system transient stability analyses.
利用线性反馈控制和自适应控制方法,研究了一种新的混沌系统的稳定不稳定平衡点的。
By utilizing linear feedback control and adaptive control approaches, the stabilization of unstable equilibrium points of a new chaotic system was studied.
得出了该系统存在唯一的稳定平衡点的结论。并对模型及其平衡点的生物学意义做了阐释。
It has given the conclusion that there is only one stable equilibrium point in the system.
提出一种基于伴随系统和变号系统的求解电力系统经典模型稳定边界上不稳定平衡点的方法。
A new method based on adjoint system and minus system to compute unstable equilibrium points on the stability boundary of power system classical model is proposed.
该模型的动态特性可由对偶微分方程描述,它具有从状态空间内任一初始点找出多个稳定平衡点的能力。
The dynamical property of this model is described by dual differential equations and it can find out several stable equilibrium points from any initial point in the state space.
由于种内互助作用的存在及食植者采食速率、食植者密度等因子的影响,牧草植物种群存在多个稳定平衡点。
There are multiplicity of stable states in herbage populations owing to the influences of intraspecific mutualism, feeding rate and density of herbivores.
通过力学分析,建立了离心调速器系统的动力学方程,应用李雅普·诺夫直接方法得到该系统稳定平衡点的条件。
By using mechanical analysis, the dynamic equation of the system was established, the Lyapunov direct method was applied to obtain stability conditions of system equilibrium points.
换句话说,在另一较高的串联补偿度上,轨道不稳定的极限环将从原来渐近稳定平衡点上分岔出来,系统的稳定性态将被改变。
In other words, the unstable limit cycle will be bifurcated from the original asymptotical stable equilibrium point at another higher series compensation level, and the system dynamics will change.
换句话说,在另一较高的串联补偿度上,轨道不稳定的极限环将从原来渐近稳定平衡点上分岔出来,系统的稳定性态将被改变。
In other words, the unstable limit cycle will be bifurcated from the original asymptotical stable equilibrium point at another higher series compensation level, and the system dynamics will change.
应用推荐