研究混沌离散系统中不稳定周期轨道的镇定问题。
The stabilization problem of unstable periodic orbits embedded in chaotic discrete-time systems is discussed.
通过调节反馈强度可以得到不同的稳定周期轨道。
Different periodic orbits can be obtained by changing feedback intensity.
提示出非稳定周期轨道在神经不规则放电节律的动力学之中起着重要作用。
These results suggest that the UPO play an important role in the dynamics of the irregular firing pattern of neuron's discharge.
提示出非稳定周期轨道在神经不规则放电节律的动力学之中起着重要作用。
These results suggest that the UPO play an important role in the dynamics of the irregular firing pattern of neur...
结论非稳定周期轨道可以刻划hrv的动力学性质,是分析HRV的潜在的方法。
Conclusion UPOs can be used to characterize the dynamics of HRV and is a potential method to analyze HRV.
这种分析的概念的基础是将所观察到的神经元活动抽象成用非稳定周期轨道的分级所描述的动力学图。
The conceptual foundation of this analysis is the abstraction of observed neuronal activities into a dynamical landscape characterized by a hierarchy of "unstable periodic orbits" (UPOs).
结果表明,通过改变系统变量之间的线性变换矩阵,可以实现混沌系统中各种不稳定周期轨道的稳定控制。
The results show that the UPOs embedded in the chaotic system can be stably controlled by changing the linear transformation matrix of system variables.
目的研究立位心脏R- R间期信号的非稳定周期轨道的结构,进一步探讨心率变异(HRV)的动力学特征。
Objective To study structure of the unstable periodic orbits (UPOs) of R-R interval signals of heart during orthostatic standing, and to reveal the dynamic characters of heart rate variability (HRV).
在此基础上,进一步对阵发放电的非稳定周期轨道分级进行了初步研究,检测到了显著的周期2与周期3轨道。
We also detected the orbits with higher periods, and highly significant unstable period 2 and period 3 orbits were identified.
外激励相位控制采用微小信号控制并使控制信号与系统的不稳定周期轨道达到最佳相位匹配,获得最佳控制效果。
The small control is adopted also in the phase control and the best phase matching between the control signal and the unstable periodic orbit is reached. Then the best effect of control is got.
第一种控制方案是一种微扰控制,并能将BZ-CSTR化学混沌稳定控制到其内嵌的不稳定周期轨道(UPO)上去。
The first control method is a kind of perturbation control and can stabilize the BZ-CSTR chemical chaos to its embedded unstable periodic orbits (UPO).
为刻划心脏节律存在的确定性动力学特征,运用不稳定周期轨道分析方法对健康青年人的RR间期时间序列数据进行分析。
To characterize the deterministic dynamics in heart rhythm, the unstable periodic orbit analysis were the RR interval time series of healthy young men.
这一控制方法的优点是不需要获取时空混沌系统中不稳定周期轨道的任何信息,且控制参数与被控系统的参数和变量的取值无关。
The advantage of this method is that it does not need to know any information about the UPOs embeded in spatiotemporal chaotic system.
这一控制方法不需要获取时空混沌系统中不稳定周期轨道的任何信息 ,控制参数的选择与被控的时空混沌系统的参数和方程无关。
This method does not need to know any information about UPO embedded in strange STC attractor. The choice of control parameter is independent of parameter and equ…
在我们这个宇宙里出现了漫长生命周期的恒星,具有稳定轨道的行星,能够实现复杂化学变化的分子,仿佛它的物理法则曾被精确校准过。
In our universe the laws of physics seem precisely calibrated to allow the existence of long-lived stars, planets with stable orbits, and molecules that allow complex chemistry.
其次,应用泰勒展开定理,设计了一种近似的延迟反馈控制方法,将受控的系统稳定到希望的周期轨道或平衡点上。
Secondly, we design an approximated delay feedback control method by applying Taylor theorem; it can make the controlled system stabilize the expected periodic orbits or equilibrium points.
采用单限幅的方式,得到了被稳定住的不同的周期轨道,同时进行了数值模拟计算,模拟结果与实验结果相吻合。
Some stabilized different periodic orbits were obtained in the mode of single limited amplitude, and simulation results are in accord with the experiment.
数值计算耦合单峰格子(CLL)的两种典型模式,得到了一系列稳定的时空周期轨道。
Two typical pattern in coupled logistic lattices (CLL) are calculated numerically and a series of stabilized spatiotemporal periodic orbits are obtained.
并将该混沌控制方法推广应用到二维光滑混沌映射系统中,成功实现了该混沌系统中的不稳定周期2轨道的镇定。
A two-dimensional smooth mapping system can be controlled from chaos to a stable period-2 orbit by the nonlinear feedback chaos control method.
计算机仿真模拟结果显示,可以将系统稳定在不同的周期轨道,从而证明了所给方法的有效性。
Value simulant results by computer show the system can be stabilized into different periodic orbits by using of the method, and testify this method is valid.
利用OGY方法必须预先知道系统要被稳定的周期轨道,并且这种方法控制的实时性较差。
But the periodic orbit of the system must be found, before OGY method can work.
利用庞加莱映射将周期轨道的稳定性分析转化为映射平面上不动点的稳定性分析。
With the help of Poincare mapping, the stability problem of periodic orbits was changed to that of the fixed points on the mapping plane.
用该控制方法对多个典型混沌系统进行数字仿真实验,获得了稳定的周期1、周期2和周期4轨道。
The method is verified by the simulations of many typical chaotic systems. The period-1 orbits, period-2 orbits and period-4 orbits are obtained from the simulation experiments.
既能使混沌系统稳定到不动点,也能使混沌系统稳定到周期轨道。
Chaotic systems can be stabled onto their fixed-points and period trajectories.
从得到的1 0例数据中无一例外地检测到了具有高度统计显著性的非稳定周期1轨道。
Unstable period 1 orbits with high statistical significance were identified in all 10 data sets.
从得到的1 0例数据中无一例外地检测到了具有高度统计显著性的非稳定周期1轨道。
Unstable period 1 orbits with high statistical significance were identified in all 10 data sets.
应用推荐