计算阻抗矩阵元素时,由于被积函数振荡性很强,收敛慢,难于计算。
The integrand exhibits slowly convergence and highly oscillatory, which leads to difficulties when attempting to evaluate the impedance matrix elements.
这些结果能被用来研究共轭调和函数的可积性并且估计它们的积分。
These results can be used to study the integrability of conjugate harmonic functions and estimate the integrals for them.
定积分的计算是高等数学的重要内容之一,但在积分计算时可以结合积分区域的对称性和被积函数的奇偶性来简化计算。
Optimal calculation of definite integral can be obtained by combination of the odevity of function and the symmetry of integral domain.
定积分的计算是高等数学的重要内容之一,但在积分计算时可以结合积分区域的对称性和被积函数的奇偶性来简化计算。
Optimal calculation of definite integral can be obtained by combination of the odevity of function and the symmetry of integral domain.
应用推荐