测得的热中子积分通量值与计算值作了比较。
The measured value of integrated thermal neutron flux was compared with the calculated value.
本文叙述了用钴活化法测定高通量堆中热中子积分通量的方法。
A method is presented for the measurement of integrated thermal neutron flux in a high flux reactor by a Co-activation method.
FY 1C星空间粒子成分探测器能够实现对质子能谱、电子积分通量及重离子成分的同时测量。
The space particle composition detector aboard FY-1C satellite can simultaneously detect proton spectrum, electron integrated flux and heavy ion composition.
我们需要计算通量的积分。
这是计算过程的关键步骤,也就是说,你们已经知道如何用线积分去计算通量了。
That is the key to computing things in practice. It means, actually, you already know how to compute line integrals for flux.
一旦我们做出了选择,同时也就可以定义通量积分。
Now, once we have made a choice then we can define the flux integral.
求通量的线积分就变成这样了。
下面应该如何,在这样的曲面上建立通量的积分。
Now, how would we actually set up a flux integral on such a surface.
来看看更多的取通量积分的方法。
每当做通量的曲面积分时,你要做两件事。
Whenever you do a surface integral for flux you have two parts of the story.
关于建立通量积分,又问题吗?
有两种选择,当你要建立通量的积分时,就必须取定曲面的正向。
There are two choices. Basically, whenever you want to set up a flux integral you have to choose one side of the surface.
这和其他通量积分是一样的。
我不需要真的计算通量积分。
那就无法把通量想成线积分了。
再考虑这个通量积分。
有一个和散度定理很像的东西,当然,对于通量和div,f的二重积分,都可以使用类似的理论。
There is a similar thing with the divergence theorem, of course, with flux and double integral of div f, you can apply exactly the same argument.
这就是说通量的二重积分,顶部R•ndS的二重积分,变成了Rdxdy的二重积分。
So, that means that the double integral for flux through the top of R vector field dot ndS becomes double integral of the top of R dxdy.
那么我就能名正言顺地,用R上的某个函数的二重积分来替代通量的线积分。
Then I can actually -- --replace the line integral for flux by a double integral over R of some function.
平面中的通量和空间中的通量有很大区别,在平面中,通量仅仅是线积分的另一种形式,而在空间中,它表现为曲面积分。
Flux looks quite different in the plane and in space because, in the plane, it is just another kind of line integral, while in space it is a surface integral.
不管是线积分或是二重积分,也不管它们表示的是功还是通量,计算它们的方法实际上是一样的。
And whether these line integrals or double integrals are representing work, flux, integral of a curve, whatever, the way that we actually compute them is the same.
通量是什么?,通量其实是又一种线积分。
What is flux? Well, flux is actually another kind of line integral.
比较这个二重积分的话,抱歉。。。,比较这个三重积分和通量积分,就可以看到,它们是一样的。
So, now, if I compare my double integral and, sorry, my triple integral and my flux integral, I get that they are, indeed, the same.
需要指出的是,如果要分别计算两边的积分,这就是标准的通量积分。
But, what I want to point out is if you have to compute the two sides separately, well, this is just, you know, your standard flux integral.
如果对这些小块表面通量求和,就会看到,这些垂直切口积分了两次。
But, also, if you sum the flux through the surface of each little piece, well, you will see that you will be integrating twice over each of these vertical cuts.
它可以对任一个小平面使用-,比如说对于这条曲线的线积分,等于通过这个曲面的旋度通量。
What it says on each small flat piece — it says that the line integral along say, for example, this curve is equal to the flux of a curl through this tiny piece of surface.
那么,如果我们想要比较它们,我们应该把它们相减,用S1的通量积分减掉s2的通量积分。
So, if we want to compare them, we should probably subtract them from each other. OK, so let's do the flux integral for S1 minus the flux integral for S2 of the same thing.
那么对做功求线积分,就变成坐标积分,同时也有对通量求线积分的。
So, the line integral for work Mdx+Ndy becomes in coordinates integral of Mdx plus Ndy while we've also seen line integral for flux.
让我们考虑关于S1和S2的通量积分的比较。
Well, let's think about comparing the flux integral for S1 and the flux integral for S2.
的法向量似乎是指向外部。,And, the,normal, vector, to,s, seems, to, be, pointing, out wards, everywhere。,如果我们有一个法向量指向外部的封闭曲面,并且我们要求出它的一个通量积分,那么我们可以用一个三重积分来代替这个通量积分。
S if we have a closed surface with a normal vector pointing outwards, and we want to find a flux integral for it, well, we can replace that with a triple integral.
应用推荐