本文对于矩形区域上某一内点为奇点的奇异积分的近似计算给出了优化中心数值算法,它在迭代计算过程中避免了函数值的重复计算。
This paper presents an optimum numerical algorithm of center rule for the approximate evaluation of singular integrals over rectangular domains with a inner singularity.
在近似计算中常要考虑积分与积分和的误差。
The error of integration and integral sum are often considered in approximation and(calculation).
本文推广和改进了定积分近似计算的矩形公式。
In this paper, we extend and improve the rectangle formula of definite integrals 'approximate calculation.
对于定积分近似计算中常使用的经典SIMPSON求积公式介绍一种新的简洁的证明方法并给出误差的最佳估计。
We introduced a new and simple proof of the classical SIMPSON quadrature formula which is frequently applied in calculating definite integrals and best estimation of error is obtained.
讨论曲线上柯西型奇异积分利用三次复样条进行近似计算的误差估计,对于相关函数类给出了这类逼近的误差阶。
This paper discusses the estimation of approximation orders of singular integrals over a general curve by means of cubic complex spline.
讨论曲线上柯西型奇异积分利用三次复样条进行近似计算的误差估计,对于相关函数类给出了这类逼近的误差阶。
This paper discusses the estimation of approximation orders of singular integrals over a general curve by means of cubic complex spline.
应用推荐