研究方向:偏微分方程、生物种群动力学。
Research fields: Partial differential equations, Biological population dynamics.
本文研究两种群动力学方程平衡点的稳定性。
In this paper we study the stability for equilibrium points of equations in two-population dynamics.
来自生物数学和种群动力学的动力系统的例子。
Dynamical systems examples from mathematical biology and population dynamics.
剩余产量模型是鱼类种群动力学的主要模型之一。
Surplus production models are among the main models for fish population dynamics.
脉冲现象广泛存在于各种应用领域,特别是种群动力学中。
There are impulsive phenomena in all kinds of applied fields, especially in population dynamics.
主要研究鱼类种群动力学,包括海洋鱼类的生长,死亡,补充,数量变动等。
Mainly work on fish population dynamics, including growth, mortality, recruitment and population dynamics.
它被广泛应用于生物技术、药物动力学、物理、经济、种群动力学、流行病学等领域。
It is widely applied in various domains such as biological technology, medicine dynamics, physics, economy, population dynamics and epidemiology.
它被广泛应用于药物动力学、生物技术、经济、物理、流行病学、种群动力学等领域。
It is widely applied in various domains such as medicine dynamics, biological technology, economy, physics, population dynamics and epidemiology and so on.
本文采用非线性分析方法,研究生物种群动力学中一类拟线性抛物系统,得到解的整体存在性。
In this paper, using the methods in nonlinear analysis, this present paper, studies the quasilinear parabolic systems in population dynamics, and obtained the existence of the global solution.
本文研究了具有非线性接触率和易感类中具有种群动力学的SIS传染病模型的正不变集、平衡位置以及平衡位置的稳定性。
In this paper, we have studied a SIS epidemiological model with a nonlinear incidence rate and population dynamics in susceptible class.
当社会没有达到了马尔萨斯理论的限度,像那些在人口统计学优势范围中的种群,群体动力学就较少的表现出零和思想。
When societies are not at the Malthusian limit, such as those groups which are the wave of demographic advance, between group dynamics may be less characterized by zero-sum thinking.
在数学生态学领域,用数学的方法研究传染病动力学和种群生态学很受重视。
In the field of mathematical ecology, it is important to use mathematics to study epidemic dynamics and population ecology.
这就为应用生态学最著名的种群模型来研究其动力学行为奠定了基础。
So it provides research basis on dynamics behavior by using the most famous population model in ecology.
研究了一个具有阶段结构,脉冲生育及在固定时刻对其喷洒杀虫剂的害虫种群模型的动力学性质。
We investigate the dynamic behaviors of a stage-structured pest population model with birth pulse and impulsive spraying pesticide at fixed time.
研究表明了系统动力学模型在害虫种群发育动态及预测方面有着良好的应用潜力。
The results indicated that system dynamics model had potential application for forecasting pest population dynamics.
在第二章,我们研究了密度依赖生育脉冲对单种群阶段结构离散模型的动力学行为的影响。
Firstly, we propose and study the single-species discrete population model with stage structure and birth pulses.
在第二章,我们研究了密度依赖生育脉冲对单种群阶段结构离散模型的动力学行为的影响。
Firstly, we propose and study the single-species discrete population model with stage structure and birth pulses.
应用推荐