硅片键合强度达到了体硅的强度。
硅片键合往往与表面硅加工和体硅加工相结合,用在MEMS的加工工艺中。
The silicon bonding technology is generally combined with surface silicon machining and bulk silicon machining in MEMS.
探讨了使用湿化学法对硅片表面进行活化,完成硅圆片低温直接键合的流程。
The process of low temperature wafer direct bonding using wet chemical surface activation methods are discussed.
硅片直接键合(SDB) 技术的关键在于硅片表面的亲水处理,本文分析了亲水处理之微观机理。
Successful Silicon to silicon direct bonding(SDB)mainly depend on the hydrophilicity treatment of silicon surface. Micro mechanism of hydrophilicity has been analyzed in the paper for the first time.
通过有限元法对键合热应力进行分析,得到热应力最大值位于玻璃焊料与硅片接触面的外拐角处,其次是玻璃焊料内外边缘处;
The finite element analysis shows that the maximum thermal stress is in the outside corners of the glass solder. The thermal stress in the edges of glass solder is also high.
实验表明,CF4对硅片的处理不仅可以激活表面,而且可以对硅片 表面进行有效的抛光,大大加强了预键合的效果。
The experiments show that CF4 treatment to silicon wafers can not only activate them but also polish their surfaces effectively, and it can improve the pre-bonding greatly.
由于芯片本身是由硅片和玻璃片经阳极键合而成,有非常好的导热效果,而且没有使用具有较大热容的外置加热器件,从而提高了PCR反应的升降温速度,缩短了PCR反应总时间。
And no use of larger heat capacity of the external heater parts, so as to enhance the heating and cooling rate of the PCR reaction, reducing The total time of the PCR reaction.
由于芯片本身是由硅片和玻璃片经阳极键合而成,有非常好的导热效果,而且没有使用具有较大热容的外置加热器件,从而提高了PCR反应的升降温速度,缩短了PCR反应总时间。
And no use of larger heat capacity of the external heater parts, so as to enhance the heating and cooling rate of the PCR reaction, reducing The total time of the PCR reaction.
应用推荐