这些是一个矩阵的行和列。
矢量图,我现在,我想要寻找矩阵的列,我想要找寻这部分和这部分。
So the column picture... I'm now, I gonna look at the columns of the matrix, I'm gonna look at this part and this part.
正如在表1里看到的,框架矩阵由代表一个项目的六行和六列组成。
As you can see in Table 1, the framework matrix is composed of rows representing six organizational perspectives and six columns representing fundamental aspects of a project.
一旦我们指定的单个事实表中,我们可以列补充矩阵列来表示事实表的粒度和相应的事实(确切,计算或预示)。
Once we've specified the individual fact table, we can supplement the matrix with columns to indicate the fact table's granularity and corresponding facts (actual, calculated or implied).
对于我来讲,那个矩阵乘以这个矩阵表示我取一倍的那个列和两倍的那个列然后相加。
For me that matrix multiply this matrix multiplication say that I take one of that column and two of that column and add.
本文通过引入弹性约束刚度矩阵和结构位移约束列阵,提出了结构有限元分析中处理阶跃型弹性约束的一种有效方法。
This paper presents a effective method dealing with step elastic supports in structural finite element analysis by inducing elastic support stiffness and structural displacement support matrices.
文章利用矩阵的行向量组和列向量组的极大无关组刻画了矩阵半群中的格林关系。
In this paper, we described the green relations on matrix semigroup through the vector maximal independent subset of matrix.
通过对时间表问题的认识,设计了求解该问题的遗传算法。给出了矩阵编码,和针对矩阵行、列操作的遗传算子并给出了一个实例。
This paper design the generic arithmetic about the Time Table Problems, give out the matrix coding and generic arithmetic operators base on matrix row, line. A example is given.
研究了弹性结点有限元方法,详细导出了弹性结点杆件的单元刚度矩阵和常见荷载列阵。
This paper introduces a finite element method of the plane trusses with elastic node. The element stiffness matrix and loading matrix are calculated in detail.
竞赛矩阵和竞赛图由于具有固定行和向量及列和向量的非负矩阵类的计数,是组合数学的一个非常困难的问题,因此对具有固定得分向量的竞赛矩阵的计数问题也比较困难。
But it is very difficult to compute the number of non-negative matrix with fixed score row or column vectors, so to compute the number of tournament matrix with fixed score vector is also difficult.
求出使最优解或最优基保持最优的消耗系数矩阵中列向量和行向量的可变范围。
The variable ranges of vectors in consumption coefficient matrix for which the optimal solution or optimal basis remain invariable are determined.
本文剖析了线性代数中伴随矩阵、行向量与列向量的乘积、正交矩阵几个较难掌握的概念,由此引出这些概念的一些基本特征和性质。
This article analyzes a few profound concepts, such as companion matrix, line vector, column rector, orthogonal matrix, and recommend many qualities, which are difficult to grasp for many students.
通过对刚度矩阵及荷载列阵集成方法的探讨,用“对号入座”的方法得到结构整体刚度矩阵和结构整体荷载列阵。
After discussing method for integrating stiffness matrix and load embattle, they are integrated with 'set - in - right - position 'rule.
通过位移法分析,导出了结构总刚度矩阵和等效结点荷载列阵的组成规则,并且具体的算例进行了验证。
The assembly rules of a global stiffness matrix and an equivalent nodal loads vector are derived by means of equilibrium method with a numerical example given.
文中首先总结按行划分和按列划分的并行矩阵向量乘法在原理上的异同。
First summarizes the differences on principle between two kinds of parallel algorithm of matrix-vector multiplication, namely, divided by row and divided by column.
想象你的数据作为一个用户行和艺术家的列的矩阵,每个细胞含有比。
Imagine your data as a matrix with users as rows and artists as columns, with each cell containing the ratio.
以矩阵中的行和列的形式显示节点。
该算法利用多项式带余除法的相关推论,通过矩阵的列变换来求解关键方程,这样可以快速地得到商式和余式,从而可以减少迭代运算的次数。
The proposed algorithm use the related deduction of division with reminder of polynomials and the key equation is solved by column transformation of matrix.
接下来的大序列、序列模式等都是通过矩阵的列向量对应元素的相乘运算和简单的加法运算而得到。
Then, large sequence and sequential patterns are all out pass the vector of matrix multiplication operator corresponding to the elements and simple addition operations have been.
你可能希望计算填充是分组数量(关联矩阵中行和列的数量)的函数。
You may wish to compute the padding as a function of the number of groups (the number of rows or columns in the associated matrix).
你可能希望计算填充是分组数量(关联矩阵中行和列的数量)的函数。
You may wish to compute the padding as a function of the number of groups (the number of rows or columns in the associated matrix).
应用推荐