本文介绍用t矩阵方法来计算表面缺陷散射场时所用到的几个特殊函数的计算机数值编程方法。
In this paper, we will introduce the computer programming methods of several special functions which are used in calculation of the surface defects' scattered field by T-matrix method.
由于基础动力阻抗矩阵是外荷载激励频率的函数,采用更多参数的一般集中参数模型与数值解答吻合精度更高。
The general lumped parameter model introduced in this paper offers more accurate results than the traditional method for dynamic stiffness matrix of foundation is frequency-dependent.
本文定义了带有对称函数的实四无数矩阵的广义数值半径并得到了它们所满足的不等式。
In the paper the generalized numerical radiuses of real quaternion matrices with symmetric function are defined and theirs inequalities are given.
讨论了线性规划模型中,消耗系数矩阵a中某个基变量或某个约束方程的系数向量变化以及增减约束方程时,对最优基、最优解、目标函数值和影子价格的影响。
The paper discuss the effect exerting on objective function, optimum solution and shadow price in LP when consumption coefficient matrix a change and a inequality constraint is increased or decreased.
利用转移矩阵法分析具有线性和非线性缺陷层的一维光子晶体的传递函数并进行了数值模拟。
The transfer characteristics of one-dimensional photonic crystal with linear and nonlinear defect layers are analyzed and simulated with a transfer matrix.
本文讨论的是矩阵样条函数在矩阵微分方程数值解中的一些应用。
This article discusses some applications of the matrix differential equations used by matrix spline function.
第二节介绍用三次矩阵样条函数方法逼近一阶矩阵非线性微分方程的数值解。
Section II describes the numerical solution of first-order matrix differential non-linear equation using the cubic matrix spline function.
第一节介绍了三次矩阵样条函数方法和四次矩阵样条函数方法逼近一阶矩阵线性微分方程的数值解。
Section I describes the numerical solution of first order matrix linear differential equation using the cubic matrix spline function and quartic matrix spline function.
然后引入作用较大的高阶广义节点形函数,扩充广义刚度矩阵,并求解新的整体平衡方程,得到更高精度的数值解。
Then, those useful generalized nodes are selected, and the generalized stiffness matrix is enlarged. A more accurate numerical solution can be obtained after the new equilibrium equations are solved.
负电荷激子是三个带电粒子的体系,构成本征函数的基矢数以及哈密顿矩阵元都极大,数值计算艰浩。
A negatively charged exciton is a system of three charged objects, making the numerical computations difficult due to the large size of the basic vector set and the Hamiltonian matrix.
第三章讨论的是基于矩阵样条函数的二阶矩阵微分方程数值解。
Chapter 3: Introduce the numerical solution of the second order matrix differential using matrix spline function.
第三章讨论的是基于矩阵样条函数的二阶矩阵微分方程数值解。
Chapter 3: Introduce the numerical solution of the second order matrix differential using matrix spline function.
应用推荐