利用矩阵几何解的方法,导出了系统稳态概率向量的明显表达式。
By using the matrix geometric solution method, we derive the explicit expressions for steady-state probability vector.
利用拟生灭过程与矩阵几何解的方法求出了系统的稳态平衡条件和稳态概率分布。
By using the Quasi-Birth-Death process and the matrix geometric solution, we obtain the equilibrium conditions of the system and the steady-state probability distribution.
在模型求解过程中,本文采用拟生灭过程和矩阵几何解方法得到了各模型的稳态队长分布以及其相关指标。
In the process of resolution, we use Matrix - Geometric solution, and derive the queue length distribution and some performance measures.
通过拟生灭过程的方法求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值结果。
Using the quasi-birth-and-death process method, we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.
通过拟生灭过程的方法求出了系统稳态平衡条件和稳态概率向量的矩阵几何解,并给出了系统的一些性能指标和数值结果。
Using the quasi-birth-and-death process method, we derive the equilibrium condition of the system and the matrix-geometric solution of the steady-state probability vectors.
应用推荐